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Chair for Vehicle Mechatronics

Technische Universität Dresden

PD Dr.-Ing. habil. Christian Schiller

Theoretical Transportation Planning

Technische Universität Dresden

Dr.-Ing. Hans-Jürgen Stauss

Group Research Mobility

Volkswagen AG, Wolfsburg

Copyright c© 2008 by Arne Kesting. All rights reserved.

Email: mail@akesting.de

Homepage: http://www.akesting.de

Institute for Transport & Economics

Andreas-Schubert-Straße 23

Department of Transport and Traffic Sciences

Technische Universität Dresden

D-01062 Dresden (Germany)

ii



Abstract1

Efficient transportation systems are essential to the functioning and prosperity of modern,

industrialized societies. Mobility is also an integral part of our quality of life, sense of

self-fulfillment and personal freedom. Our traffic demands of today are predominantly

served by individual motor vehicle travel which is the primary means of transportation.

However, the limited road capacity and thus traffic congestion has become a severe prob-

lem in many countries. On the one hand, traffic demand can only be affected indirectly

by means of policy measures. On the other hand, an extension of transport infrastructure

is no longer an appropriate or desirable option in densely populated areas. Moreover,

construction requires high investments and maintenance is costly in the long run. There-

fore, engineers are now seeking solutions to the questions of how the capacity of the road

network could be used more efficiently and how operations can be improved by way of

intelligent transportation systems (ITS).

Achieving this efficiency through automated vehicle control is the long-standing vision in

transport telematics. With the recent advent of advanced driver assistance systems, at

least partly automated driving is already available for basic driving tasks such as acceler-

ating and braking by means of adaptive cruise control (ACC) systems. An ACC system

extends earlier cruise control to situations with significant traffic in which driving at con-

stant speed is not possible. The driver cannot only adjust the desired velocity but also

set a certain safety time gap determining the distance to the leading car when following

slower vehicles. The task of the ACC system is to calculate the appropriate acceleration

or deceleration as a function of the input quantities and the driver’s settings. Therefore,

the actual distance and speed difference to the vehicle ahead is measured by means of a

long-range radar sensor.

The thesis is composed of two main parts. The first part deals with a microscopic traffic

flow theory. Models describing the individual acceleration, deceleration and lane-changing

behavior are formulated and the emerging collective traffic dynamics are investigated by

means of numerical simulations. The models and simulation tools presented provide the

methodical prerequisites for the second part of the thesis in which a novel concept of a

traffic-adaptive control strategy for ACC systems is presented. The impact of such systems

on the traffic dynamics can solely be investigated and assessed by traffic simulations.

1For a summary in German, we refer to Page 187.
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Microscopic Model Calibration and Validation

The Intelligent Driver Model (IDM)2, a microscopic car-following model, is the starting

point of the thesis. It is well-known from the literature that the IDM is able to reproduce

all essential traffic dynamic phenomena observed on freeways. Furthermore, the IDM

features a small number of parameters which are easy to interpret and therefore allow for

a intuitive characterization of different driver-vehicle classes (e.g., cars and trucks) but

also heterogeneous driving behavior. A basic understanding of the properties of the IDM

is obtained by the in-depth investigation of the single-vehicle dynamics, the equilibrium

characteristics and the emergence of collective instabilities.

In the literature, the IDM has been calibrated using macroscopic quantities derived from

empirical speed and flow data. In the thesis, a microscopic calibration and validation

framework for car-following models is presented which aims to minimize deviations between

the observed driving dynamics and the simulated trajectory when following the same

leading vehicle. For the numerical solution of this nonlinear optimization problem, a

genetic algorithm has been developed. Three different objective functions were formulated

to assess the reliability and robustness of the calibration results. The IDM was able to

reproduce the driving behavior reflected in the empirical trajectories. The calibrated model

parameters are in the expected range whilst the errors obtained are between 10% and 30%

which is consistent with errors typically found in previous studies for other models. The

results indicate that dynamic adaption processes of the drivers (intra-driver variability)

rather than varying driving characteristics of different drivers (inter-driver variability)

account for a large part of the calibration errors.

Model for the Human Driving Behavior

As shown in the calibration study, the Intelligent Driver Model is able to describe the

human driving behavior on a microscopic level to a satisfactory extent. With respect

to obvious operational differences between a human driver and a simplistic car-following

model which simply reacts instantaneously to the immediate vehicle ahead, it is important

to ask for a theoretical justification. This is not only of fundamental scientific interest but

also relevant to the underlying modeling assumptions in the second part of the thesis.

A complex microscopic traffic model is formulated which comprises essential aspects of

human driver behavior not captured by simple car-following models. In the first place,

there is a finite reaction time, the mathematical formulation of which leads to delay-

differential equations. It is known from the literature that human reaction times are of

the order of one second leading to very unstable modeled driving behavior. Stability

2M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic

simulations, Physical Review E 62, 1805 -1824 (2000).
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is further reduced by limited human perception and estimation capabilities which are

treated by Wiener processes leading to stochastic model elements. For a stabilization

of the microscopic driving behavior, two anticipation mechanisms are considered: First,

the modeled driver reacts not only to the immediate leader but also (with decreasing

weights) to the vehicles further ahead (“spatial” or multi-anticipation). In this respect,

the proposed model goes well beyond the usual car-following approximation. As the driver

knows about his or her reaction time while perceiving the vehicles in front we moreover

assume a heuristic that extrapolates the actual traffic situation on the scale of the reaction

time (“temporal” anticipation).

The three characteristic time constants that influence the collective dynamics and sta-

bility of traffic flow are: (i) The delay caused by the finite reaction time of the drivers,

(ii) the time lag due to a finite velocity adaptation time needed to accelerate to a new

desired velocity, and (iii) the numerical update time3. In the proposed model, these ef-

fects are incorporated by independent parameters. By means of numerical simulations, we

investigate how these times are interrelated and act to influence the local and collective

mechanisms for instability in a platoon of vehicles. The long-wavelength string instability

is mainly driven by the velocity adaptation time (due to the vehicles’ limited acceleration

capabilities) whilst short-wavelength local instabilities arise by sufficiently high reaction

and/or update times. Furthermore, we investigate the relationship between large update

time steps and finite reaction times, both of which introduce delays in the reaction to

the traffic situation. Remarkably, the numerical update time is dynamically equivalent to

about half the reaction time which clarifies the meaning of the time step in models formu-

lated as iterated maps such as the Newell and the Gipps models. With respect to stability,

we found an optimal adaptation time (corresponding to moderate vehicle accelerations)

as a function of the reaction time.

Furthermore, we simulate the emerging macroscopic traffic dynamics in the presence of

finite reaction times and driver anticipation in a complex scenario with a flow-conserving

bottleneck (e.g., a lane closure or roadworks) in the open system with a time-dependent

inflow as upstream boundary condition. It is shown that various spatiotemporal patterns

of congested traffic can be reproduced by varying intrinsic model parameters such as

reaction times and multi-anticipation. Moreover, we show that the destabilizing effects

of reaction times and estimation errors can essentially be compensated for by spatial and

temporal anticipation. Remarkably, the anticipation allows accident-free smooth driving

3As well as the numerical necessity for a finite time discretization to solve differential equations by means
of numerical integration, the update time can be interpreted as representing finite attention to the

traffic: Only at times that are a multiple of the update step do drivers look at the traffic situation
and instantaneously adapt their acceleration to the new situation. Because of the intuitive meaning of
this update procedure in the context of traffic, the explicit integration scheme is sometimes considered
as an explicit model parameter rather than as a numerical approximation. Popular examples of such
coupled maps include the models by Newell and Gipps.
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in complex traffic situations even if reaction times exceed typical safety time gaps. Within

the proposed modeling framework, these findings are able to explain why the simplified car-

following models are capable of quantitatively describing the empirically observed traffic

phenomena.

Modeling Lane-Changing Decisions

In addition to the acceleration and deceleration behavior of the drivers in the lane, a fully

multi-lane simulation framework is needed for a realistic microscopic description of freeway

traffic as only the possibility of passing slower vehicles allows for a consideration of effects

that are caused by heterogeneous driver types and different vehicle classes. In addition,

realistic on-ramp bottlenecks require the explicit modeling of the merging decision to the

main road.

The general model MOBIL (“Minimizing Overall Braking Induced by Lane Change”) is

proposed to derive lane-changing rules for discretionary and mandatory lane changes for a

wide class of car-following models. Both the utility of a given lane and the risk associated

with lane changes are determined in terms of longitudinal accelerations calculated with

microscopic traffic models. This determination in terms of a “meta model” allows for

the formulation of compact and general safety and incentive criteria for both symmetric

and asymmetric passing rules. Moreover, anticipative elements and the crucial influence of

velocity differences of these car-following models are automatically transferred to the lane-

changing rules. Although the safety criterion prevents critical lane changes and collisions,

the incentive criterion takes into account the respective advantages and disadvantages of all

drivers via a “politeness factor” which rise out of a lane change. This novel feature allows

one to vary the motivation for changing lane from purely egoistic to more cooperative

driving behavior. Firstly, the politeness parameter prevents lane changes for a marginal

advantage if other drivers are obstructed. Secondly, it induces a lane change by a slower

driver ahead if an aggressive driver in the same lane is approaching quickly. The latter

phenomenon is common for asymmetric passing rules with a dedicated lane for passing.

Simulations of an open system result in realistic lane-changing rates as a function of traffic

density.

Traffic-adaptive Driving Strategy extending ACC Systems

In the second part of the thesis, the focus is on future adaptive cruise control (ACC)

systems and their potential applications in the context of vehicle-based intelligent trans-

portation systems. Present implementations of ACC systems are exclusively designed to

increase driving comfort and the influence on the surrounding traffic is neither considered
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nor optimized. This is justified as long as the number of ACC-equipped vehicles is neg-

ligible but the growing market penetration of these devices makes the question of their

impact on traffic flow more pressing. Therefore, it is important to understand the effects

of ACC systems on the capacity and stability of traffic flow at an early stage so that their

design can be adjusted before adverse traffic effects can widely manifest themselves.

In order to ensure that ACC systems are implemented in ways that improve rather than

degrade traffic conditions, the thesis proposes an extension of ACC systems towards traffic-

adaptive cruise control by means of implementing an actively jam-avoiding driving strat-

egy.

The newly developed traffic assistance system introduces a driving strategy layer which

modifies the driver’s individual settings of the ACC driving parameters depending on the

local traffic situation. Whilst the conventional operational control layer of an ACC system

calculates the response to the input sensor data in terms of accelerations and decelerations

on a short time scale, the automated adaptation of the ACC driving parameters happens

on a somewhat longer time scale of, typically, minutes. By changing only temporarily the

comfortable parameter settings of the ACC system in specific traffic situations, the driving

strategy is capable of improving the traffic flow efficiency whilst retaining the comfort for

the driver. The traffic-adaptive modifications are specified relative to the driver settings

in order to maintain the individual preferences.

The proposed system consists of three components: (i) the ACC system itself, (ii) an

algorithm for the automatic real-time detection of the traffic situation based on local

information, and (iii) a “strategy matrix” that associates the autonomously detected traffic

situation with different parameter settings of the underlying ACC system, that is, it

implements different driving characteristics. In order to do this, a finite set of five “traffic

situations” is considered, each of which is associated with a specific set of ACC driving

parameters:

• Moving in free traffic is the default situation. The ACC settings are determined

solely with regard to the individual driving comfort. Since each driver adjusts his or

her ACC parameter settings individually, this may lead to different settings for each

ACC system.

• When entering a traffic jam (approaching an upstream congestion front) the driving

strategy aims at reducing velocity gradients in order to reduce the risk of rear-

end collisions, thus increasing collective safety. Compared to the default situation,

this implies earlier braking when approaching slow vehicles which also increases the

driving comfort. Note that the operational layer of the ACC system always assures

a safe individual approaching process independent of the detected traffic state.
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• Since drivers moving in congested traffic cannot influence the development of traffic

congestion in the bulk of a traffic jam, the ACC settings revert to the individual

parameter values of the driver again.

• Once traffic flow has broken down, the dynamics of the evolving congestion is de-

termined first by the inflow (the externally given traffic demand) and second by

the outflow from the traffic jam at the downstream congestion front. When passing

the downstream congestion front, accelerations are therefore increased and time gaps

temporarily decreased in order to raise that dynamic capacity.

• It is known that most traffic breakdowns are initiated at some sort of road inhomo-

geneities or infrastructure-based bottlenecks such as on-ramps, off-ramps or sections

of roadworks. When passing these infrastructural bottleneck sections, the objective

is to locally increase the capacity, that is, to dynamically “fill” the capacity gap. This

requires a temporary modest reduction of the parameter value for the time gap.

Note that drivers typically experience the full sequence of these five traffic states when

traveling through congested traffic. In free flow conditions, only the default and the

bottleneck state are relevant. Therefore, the cumulative time period during which the

ACC settings deviate from the default state is usually only a few percent.

The proposed system requires an autonomous real-time detection of the five traffic states

by each ACC-equipped vehicle. The formulated algorithm is based on the evaluation of

the locally available data such as the vehicle’s velocity time series and its geo-referenced

position (GPS) in conjunction with a digital map. It is assumed that the digital map is

complemented by information about stationary bottlenecks as most of the observed traffic

flow breakdowns occur at these fixed locations. By means of a heuristic, the algorithm

determines which of the five traffic states mentioned above applies best to the actual traffic

situation. Optionally, inter-vehicle and infrastructure-to-car communication technologies

can be used to further improve the accuracy of determining the respective traffic state by

providing non-local information.

Evaluation by means of Microscopic Traffic Simulations

The effects of upcoming driver assistance systems on the collective traffic dynamics can

only be evaluated by means of traffic simulations. In order to study the proposed traffic-

assistance system we have implemented the proposed components within a microscopic

multi-lane traffic simulator which considers both “human drivers” as well as which fraction

of vehicles are equipped with the traffic-adaptive cruise control system. As the autonomous

traffic state detection requires real-time traffic data, the simulations first serve as “proof

of concept” of the system components. Depending on the detected local traffic situation,
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the corresponding driving strategy is realized by the underlying ACC system. From a

formal point of view, this corresponds to a car-following model with an automatic, event-

driven choice of parameters which therefore become time-dependent. Furthermore, we

simulated a road section with an on-ramp bottleneck using empirical loop-detector data

for an afternoon rush-hour as inflow at the upstream boundary.

By means of simulation, we found that the automatic traffic-adaptive driving strategy im-

proves traffic stability and increases the effective road capacity. Depending on the fraction

of ACC vehicles, the driving strategy “passing a bottleneck” effects a reduction of the

bottleneck strength and therefore delays (or even prevents) the breakdown of traffic flow.

Changing to the driving mode “leaving the traffic jam” increases the outflow from con-

gestion resulting in reduced queue lengths in congested traffic and, consequently, a faster

recovery to free flow conditions. The current travel time (as most important criterion for

road users) and the cumulated travel time (as an indicator of the system performance)

are used to evaluate the impact on the quality of service. While traffic congestion in the

reference scenario was completely eliminated when simulating a proportion of 25% ACC

vehicles, travel times were significantly reduced even with much lower penetration rates.

Moreover, the cumulated travel times decreased consistently with the increase in the pro-

portion of ACC vehicles.

For a systematic analysis of the impact of a given proportion of ACC vehicles on capacity,

we varied external parameters such as the proportions of trucks and ACC-equipped vehicles

and also the parameterization of the proposed driving strategy. First, we considered the

maximum capacity in free flow determining the maximum throughput up to the breakdown

of traffic flow. As a dynamic quantity depending on collective stability properties, the

maximum capacity has to be distinguished from the static road capacity. For the purpose

of clarification, the stochastic nature of a traffic flow breakdown has been demonstrated by

considering multiple simulation runs. The variance of the maximum free capacity (treated

as a random variable) depends on the heterogeneity of the driver-vehicle composition.

Furthermore, it has been shown that the consideration of different vehicle classes has a

stronger impact on the arithmetic mean than the consideration of statistically distributed

model parameters within a driver-vehicle class.

Finally, the simulations allow the identification of limitations to the autonomous traffic-

state detection. In particular, the adaptation when approaching a dynamically propagat-

ing front (e.g., a stop wave) requires knowledge of the jam front position at an early stage

in order to be able to switch to the new driving strategy in time. It has been shown that

propagating jam fronts cannot be detected reliably enough on the basis of the vehicle’s

local information. In order to improve the accuracy of determining the traffic states the

detection algorithm is extended by adding non-local information that can be provided by

inter-vehicle or infrastructure-to-car communication. As concerns inter-vehicle communi-
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cation, a simulation study has demonstrated the whole cycle of information generation,

propagation, reception, processing and autonomous on-board estimation of the upcom-

ing traffic situation. The simulations demonstrate that the “store and forward” strategy

(that is, vehicles in the opposite driving direction serving as intermediate stations keeping

information and sending messages at a later point in time to other equipped vehicles in

the considered driving direction) allows for a sufficient connectivity resulting in the effec-

tual propagation of information even in the case of a limited broadcast range and a low

percentage of equipped vehicles.

The efficiency of the proposed driving strategy even with a low market penetration is

a promising result for the successful application of future driver assistance systems. In

addition to the application for traffic-adaptive cruise control, the detection, interpreta-

tion and prediction of local traffic situations in combination with future communications

technologies can be used for the development of future driver information systems.
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Preface

The volume of vehicular traffic in the past several years has

rapidly out-stripped the capacities of the nation’s highways. It

has become increasingly necessary to understand the dynamics of

traffic flow and obtain a mathematical description of the process.

Harold Greenberg (1959)

Starting from this quotation by H. Greenberg, the present doctoral thesis intends to ap-

proach these essential and still relevant problems for an efficient transportation system

from two perspectives. To begin with, the fundamental issue of a quantitative and mi-

croscopic modeling of the human driving behavior and the emerging collective traffic dy-

namics are addressed. Furthermore, an automated driving strategy for future advanced

driver assistance systems is proposed and the impact on the capacity and, thus, for a

more efficient road usage is investigated. I hope that this work will contribute to a better

understanding of the fascinating dynamics of vehicular traffic and to the development of

future applications of not only autonomous but also cooperative vehicles on our roads.
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1 Introduction

An efficient transportation system is essential for the functioning and prosperity of mod-

ern, industrialized societies. Mobility is also an integral part of our quality of life, self-

fulfillment, and personal freedom. Improving traffic safety and keep traffic flowing in the

face of growing demands on the road networks is one of the greatest challenges. Nowadays,

we additionally have to balance the human desire for personal mobility with the societal

concerns about its environmental impact and energy consumption.

Today’s traffic demand is predominantly served by individual motor vehicle travel which

is the primary means of transportation. In Germany, for example, motorized vehicles

constitute 77 % of the individual transport (measured in terms of passenger-kilometers)

and 70% of the total freight traffic (measured in tonne-km) [152]. Therefore, the capacity of

the national freeway networks is of prime importance. While the German autobahn system

only represents 4% (i.e., 12 000 km) of the total road network, it accounts for about 25%

of the total motorized traffic performance while providing a higher traffic safety compared

to the total road network by a factor of two [152].1

However, as the volume of transport has continuously grown faster than the construction of

transportation infrastructure over the last decades, traffic congestion has become a severe

problem in many countries. It is expected that the traffic volume will further rise in most

major urban areas worldwide. According to a study of the European Commission, the

external costs of congestion already amount to 0.5% of the gross national product (GNP)

in the European Union and will increase up to 1% by the year 2010 [147].2 In Germany

alone, the financial damage due to congested traffic is estimated at e 20 billion each year.

Similar proportions are determined for the USA with total costs of about e 55 billion due

to congestion in 2005, which corresponds to 0.7% of the GNP [104].

A sound approach to reducing congestion will require a mix of policies affecting demand

as well as capacity. On the one hand, travel demand might be reduced (or shifted in time

thereby levelling out peaks) by raising tolls or other taxes or by promoting public transport

1Fortunately, much progress has been made in reducing the number of transportation-related fatalities
since the 1970s. It is the ambition of the European Union to continue this progress with the goal of
halving the number of traffic fatalities by 2010 [148].

2The cost components associated with congestion are delay costs and fuel costs, whereas it is typically
assumed that the time loss is the predominant influencing factor. Nevertheless, the economic loss
of traffic accidents and the environmental impact due to traffic congestion are not considered in this
estimate.
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or greater vehicle occupancy (e.g, car-pooling). In any case, this involves the enforcement

by public authorities. On the other hand, an extension of transport infrastructure is

no longer an appropriate or desirable option in densely populated areas. Moreover, the

planning can take ten or more years, the construction requires high investments, and the

maintenance is costly in the long run.

Hence, engineers are seeking solutions how the capacity of the road network could be

used more efficiently and how operations can be improved by using new technologies. In

order to reach a more efficient road usage and to relieve traffic congestion, considerable

research is performed in the area of Intelligent Transportation Systems (ITS). The term

ITS is used to describe a collection of concepts and services to improve the safety, mobility,

efficiency, and environmental impact of vehicle and, particularly, freeway systems, while

the main focus is on the integration of information and communication technologies (ICT)

with transport infrastructure, vehicles, and users [96]. Road-based ITS strategies are, e.g.,

advanced traffic control systems such as variable message signs, adaptive speed limits, dy-

namic route guidance, incident management, and entrance ramp metering. In the 1990s,

automated highway systems (AHS) based on automated road vehicles have been proposed

as a visionary application of vehicle-based ITS [49, 129, 116, 41]. The concept of fully au-

tomated vehicle control allows for very small time headways and platoon driving, which is

obviously a key to greater capacity. Nevertheless, such systems need special infrastructure

and dedicated lanes which can only be justified if the percentage of automated vehicles is

sufficiently high. These constraints seem to make this scenario unlikely for the foreseeable

future [98].

However, with the recent advent of advanced driver assistance systems, at least partly

automated driving is already available for basic driving tasks such as accelerating and

braking by means of adaptive cruise control systems. These systems are already available

on the market and they are expected to spread in the future. So far, ACC systems have

been considered exclusively as convenience systems. Nevertheless, a growing market pen-

etration makes the question of their impact on traffic flow more pressing. The challenging

question is whether it is possible to design vehicle-based control strategies aimed at im-

proving the capacity and stability of traffic flow. This thesis will propose an extension of

today’s ACC systems by considering an adaptive driving strategy which contains several

driving modes depending on the traffic conditions. The effects of those upcoming driver

assistance systems on the collective freeway traffic dynamics will be addressed by means

of microscopic traffic simulations.

This provides the starting point for the remainder of the Introduction. In the following

Sec. 1.1, an overview of actual advanced driver assistance systems will be provided. In

particular, the focus will be on adaptive cruise control systems which are the first driver

assistance systems with the potential to influence traffic flow characteristics. In Sec. 1.2,
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mathematical approaches for describing the driving behavior and the traffic flow dynamics

will be reviewed. This introductory chapter will be completed by giving an outline of the

thesis structure and an overview of the remaining chapters (Sec. 1.3).

1.1 Driver Assistance and Adaptive Cruise Control Systems

Technology is rapidly increasing the capabilities of modern vehicles. Continuous advances

in solid-state electronics, sensors, computer technology and control systems are pushing

this trend. During the last decades, a variety of driver assistance systems have been

deployed by automotive manufacturers to improve longitudinal and lateral vehicle control,

to automate driving operations, and to reduce the driver burden. Prominent and well-

established examples are anti-lock braking systems, preventing the wheels from locking

during braking maneuvers, and the electronic stability control, preventing vehicles from

spinning and drifting out.

In the future, this trend will most likely be continued by the emergence and advancement of

Advanced Driver Assistance Systems (ADAS). These involve sensor-based systems which

continuously evaluate the surroundings of the vehicle, display relevant information to the

driver and even take control of the vehicle. In cooperation with upcoming information

and communication technologies, ADAS hold great promise in increasing the safety, conve-

nience and efficiency of driving. Functionality that is already available, either commercially

or as a prototype, include the following:

• In-vehicle navigation systems using up-to-date traffic information.

• Lane departure warning and lane-keeping assistance systems.

• Collision warning systems and active pre-crash assistance.

• Intelligent speed adaptation using extended digital maps.

• Infrared technology for enhanced vision during the night and automated marking of

pedestrians.

• Driver condition/drowsiness monitoring systems.

• Automatic parking and ‘steer-by-wire’ technologies.

Adaptive cruise control (ACC) systems3 have been available on the market since the late

1990s. These systems enable the automation of basic driving tasks such as accelerating and

3The terminology is not fixed until now. In the literature, the abbreviation ACC refers to adaptive,
automatic or advanced cruise control systems. Sometimes, these systems are also called intelligent

cruise control (ICC) or intelligent adaptive cruise control (IACC) systems. However, all these terms
are typically used synonymously.
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braking thereby extending earlier cruise control systems which were designed to reach and

maintain a certain speed preset by the driver. The ACC system extends this functionality

to situations with significant traffic in which driving at constant speed is not possible.

The driver cannot only adjust the desired velocity but also set a certain safety time gap

(typically in the range between 1 and 2.5 s) determining the distance to the leading car

when following slower vehicles. The task of the ACC system is to calculate the appropriate

acceleration or deceleration as a function of the input quantities and the driver’s settings.

Therefore, the actual distance and speed difference to the vehicle ahead is measured by

means of a long-range radar sensor which is able to detect and to track vehicles at a

distance of up to 200 m. Figure 1.1 shows the components of an ACC system.

The development and use of new driver support systems naturally raises questions about

the driver activity and behavioral adaptation aspects which are addressed in the literature

as well [126, 44, 110]. Concerning ACC systems, the study ‘The Assisted Driver’ as part

of the Dutch innovation program Roads to the future [146] observed the individual

use of ACC and lane departure warning (LDW) systems. After three months of driving

with both systems, the participants were more satisfied with the ACC than with the LDW

system. They stated that they had more confidence in the ACC system and thought it had

a greater effect on traffic safety. It was observed that participants were able to concentrate

better, anticipate better and be more vigilant. However, the participants were also more

inclined to perform secondary tasks. Furthermore, it had been stated that the ACC system

reacted too slowly in terms of acceleration when overtaking.

Hence, present ACC systems offer a gain in comfort in most driving situations on freeways

and they are expected to spread in the future. Nevertheless, it should be emphasized that

today’s ACC systems only operate above a certain velocity threshold (typically 30 km/h)

and are limited in their acceleration and braking range, typically to magnitudes below

3 m/s2. However, the next generation of ACC will be designed to operate in all speed

ranges and in most traffic situations on freeways including stop-and-go traffic by offering a

‘follow-to-stop’ functionality. In addition, future ACC systems will also have the potential

to actively prevent a rear-end collision and thus to achieve a gain in safety. Note, however,

that ACC systems only control the longitudinal driving task. In contrast, merging, lane

changing or creating gaps for other vehicles still need the intervention of the driver. So,

as the driver still stays fully responsible, he or she can override the system at any time.

However, today’s implementations of ACC systems are exclusively designed to increase

the individual driving comfort, while the influence of ACC systems on the surrounding

traffic is not yet considered or optimized. Nowadays, expecting a growing market pen-

etration of these devices, this is no longer justified and the question of their impact on

traffic flow becomes more pressing. For example, the German research initiative Invent

focused on the development and deployment of innovative vehicle technologies and ad-
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Radar range sensor Information display

ACC leverACC control unit

Figure 1.1: Components of an adaptive cruise control (ACC) system as presented in Ref. [65].

The key component of an ACC system is a (typically 77GHz) radar sensor which is able to detect

vehicles ahead at a distance of up to 200m. The required acceleration is calculated from the

distance and the velocity data by a control unit. The driver presets a desired speed and a preferred

safety time gap via a lever near the steering wheel. The actual coverage of the radar sensor and

the tracking status is displayed in the vehicle’s instrument panel.

vanced driver assistance systems for safer and more efficient future traffic systems4. In

particular, Volkswagen presented an ACC system that has been able to operate in all

speed regimes including stop-and-go conditions and follow-to-stop behavior [66, 65].

In order to ensure that ACC systems will be developed and implemented in ways that

improve, rather than degrade, traffic conditions, the impact of these systems on the traffic

dynamics has to be taken into account. The challenging question is whether it is possible

to design vehicle-based control strategies aimed at improving the capacity and stability of

traffic flow. This thesis will provide a simulation framework for considering collective

aspects emerging from individual driving characteristics. In particular, an extension of

ACC towards traffic-adaptive cruise control systems will be proposed by introducing an

automated driving strategy that depends on the local traffic situation.

1.2 Modeling of Driver Behavior and Traffic Dynamics

As mentioned, ACC systems are the first driver assistance systems with the potential to

influence traffic flow characteristics. For a quantitative description and assessment of the

collective traffic dynamics of mixed traffic flows emerging from the driving behavior of

individuals, one has to start with traffic models which capture the ‘nature’ of automated

and manual driving to a realistic degree.

Remarkably, the mathematical description of the dynamics of traffic flow has a long history

4See Appendix B on page 169 for a more detailed overview.
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already. The scientific activity had its beginnings in the 1930s with the pioneering studies

on the fundamental relations of traffic flow, velocity and density conducted by Greenshields

[29]. By the 1950s, scientists had started to describe the physical propagation of traffic

flows by means of dynamic macroscopic and microscopic models. During the 1990s, the

number of scientists engaged in traffic modeling grew rapidly because of the availability

of better traffic data and higher computational power for numerical analysis.

Traffic models have been successful in reproducing the observed collective, self-organized

traffic dynamics including phenomena such as breakdowns of traffic flow, the propagation

of stop-and-go waves (with a characteristic propagation velocity), the capacity drop, and

different spatiotemporal patterns of congested traffic due to instabilities and nonlinear

interactions [32, 57, 53, 14, 19].5 For an overview of experimental studies and the de-

velopment of miscellaneous traffic models, please consult the recently published extensive

review literature [32, 15, 82, 75, 46, 70].

Before going into detail about the possible mathematical models, it is worth mentioning

differences between modeling traffic flow and the approach used for transportation plan-

ning. While dynamic flow models explicitly describe the physical propagation of traffic

flows of a given traffic volume in a road network, transportation planning models deal

with the calculation of the traffic demand by considering the decisions of travellers to par-

ticipate in economical, social and cultural activities. The need for transportation arises

because these activities are spatially separated. The classical approach in trip-based trans-

portation models is based on a four-step methodology of trip generation, trip distribution,

mode split and traffic assignment [89, 100, 17, 76]. In the fourth step, the origin-destination

matrix of trips with a typical minimum disaggregation of time slices of one hour is assigned

to routes in the actual (or prospective) transportation network while taking into account

the limited capacity of the road infrastructure by means of simplified effective models.

In general, there are two major approaches to describe the spatiotemporal propagation

of traffic flows. Macroscopic traffic flow models make use of the picture of traffic flow as

a physical flow of some fluid. They describe the traffic dynamics in terms of aggregated

macroscopic quantities like the traffic density, traffic flow or the average velocity as a

function of space and time corresponding to partial differential equations (cf. Fig. 1.2). The

underlying assumption of all macroscopic models is the conservation of vehicles (expressed

by the continuity equation) which was initially considered by Lighthill, Whitham and

Richard [71, 99]. More advanced, so-called ‘second-order’ models additionally treat the

5At first glance, it may be surprising that simple (and deterministic) mathematical models aimed at de-
scribing the complexity of and variations in the human behavior, individual skills and driving attitudes
would lead to reasonable results. However, a traffic flow can (in a good approximation) be considered
as a one-dimensional system (with reduced degrees of freedom). Furthermore, traffic models typically
assume rational and safe driving behavior as a reaction to the surrounding traffic while taking into
account the fundamental laws of kinematics.
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Cellular automaton

Microscopic model

Macroscopic model

Figure 1.2: Illustration of different traffic modeling approaches: A snapshot of a road section at

time t0 is either characterized by macroscopic traffic quantities like traffic density ρ(x, t0), flow

Q(x, t0) or average velocity V (x, t0), or, microscopically, by the positions xα(t0) of single driver-

vehicle units α. For cellular automata (CA), the road is divided into cells which can be either

occupied by a vehicle or empty.

macroscopic velocity as a dynamic variable in order to also consider the finite acceleration

capability of vehicles [52, 122].

By way of contrast, microscopic traffic models describe the motion of each individual

vehicle, i.e., they model the action (such as accelerations, decelerations and lane changes)

of each driver as a response to the surrounding traffic. Microscopic traffic models are

especially suited to the study of heterogeneous traffic streams consisting of different and

individual types of driver-vehicle units.6 The result is the individual trajectories of all

vehicles and, consequently, any macroscopic information by appropriate aggregation (cf.

Fig. 1.2).

In order to describe the complete task of car driving, microscopic models generally com-

prise an acceleration strategy towards a desired velocity in the free-flow regime, a braking

strategy for approaching other vehicles or obstacles, and a car-driving strategy for main-

taining a safe distance when driving behind another vehicle. Microscopic traffic models

typically assume that human drivers react to the stimulus from neighboring vehicles with

the dominant influence originating from the directly leading vehicle.7 In addition, the in-

dividual driver’s behavior is characterized in terms of model parameters such as a desired

velocity, a preferred gap to the vehicle ahead while following, a limited acceleration, a com-

fortable deceleration, a reaction time, etc. Furthermore, human drivers often exhibit more

complex driving patterns such as different kinds of anticipation, limited attention spans

6The term driver-vehicle unit refers to the concept that an atomic entity includes characteristics of the
human driver (e.g., driving ‘conservatively’ or ‘aggressively’) as well as features of the vehicle (such as
its length, motorization, etc.).

7Note that the restriction to interactions regarding only the leader is the basic approximation of so-called
‘follow-the-leader’ or car-following models.
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and miscellaneous adaptation processes that might be taken into account as well. Finally,

the individual driving style is often influenced and restricted by the environment (e.g.,

rain and limited visibility), traffic legislation (e.g., speed limits) or physical limitations

(e.g., uphill gradients, motorization of the vehicle, its braking capabilities).

Specifically, one can distinguish the following major subclasses of microscopic traffic mod-

els (cf. Fig. 1.2):

• Time-continuous models are formulated as ordinary- or delay-differential equations

and, consequently, space and time are treated as continuous variables. Car-following

models are the most prominent examples of this approach [3, 123, 50, 112]. In

general, these models are deterministic but stochasticity can be added in a natural

way [125]. For example, a modified version of the Wiedemann model [132] is used

in the commercial traffic simulation software PTV-VISSIMTM [144].

• Cellular automata (CA) use integer variables to describe the dynamic state of the

system. The time is discretized and the road is divided into cells which can be

either occupied by a vehicle or empty (cf. Fig. 1.2). Besides rules for accelerating

and braking, most CA models require additional stochasticity. The first CA for

describing traffic has been proposed by Nagel and Schreckenberg [83]. Although

CA lack the accuracy of time-continuous models, they are able to reproduce some

traffic phenomena [68, 38, 62]. Due to their simplicity, they can be implemented

very efficiently and are suited to simulating large road networks [151].

• Iterated coupled maps are between CA and time-continuous models. In this model

class, the update time is considered as an explicit model parameter rather than an

auxiliary parameter needed for numerical integration. Consequently, the time is

discretized while the spatial coordinate is still continuous. Popular examples are the

Gipps model [26] and the Newell model [87]. However, these models are typically

associated with car-following models as well.

In assessing the effects of upcoming driver assistance systems (such as ACC systems) on

the collective traffic dynamics (in particular, on the capacity and stability of traffic flow),

the microscopic modeling approach is the most appropriate because it allows for a natural

representation of heterogeneous driver-vehicle units and for a detailed specification of the

parameters and proportions of ACC vehicles and manually driven vehicles. Therefore, the

effects of ACC systems on traffic flow have usually been addressed in the literature by

simulations [127, 128, 61, 47, 80, 22, 111]. However, up to now, there is not even clarity

about the sign of these effects. Some investigations predict a positive effect [119, 22] while

others are more pessimistic [57, 78]. Nevertheless, in realistically assessing the impact

of ACC on the capacity and traffic stability, the modeling approaches have to capture

8
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the driving dynamics of ACC and manually driven vehicles and the relevant interactions

between them. Consequently, the findings depend on the model fidelity, the modeling

assumptions and, in particular, on the settings for the time gaps [127, 129].

This is the starting point for this thesis, in which the question of the impact of individ-

ual (and automated) driving behavior on the collective traffic dynamics will be assessed.

Before this, the methodological fundamentals will be dealt with. Time-continuous micro-

scopic models will be presented and the evolving system dynamics studied numerically.

For these purposes, traffic simulation software has been developed which will be described

particularly with regard to the traffic simulations of mixed traffic flows consisting of driver-

vehicle units characterizing ACC systems and ‘human drivers’.

1.3 Thesis Overview and Outline

The thesis consists of two major parts. The focus will be on future ACC systems and their

potentials for applications in the context of vehicle-based intelligent transportation systems

(Part II). This relates to the collective characteristics of traffic flow which can solely

be answered by means of computer simulations and requires an integrated microscopic

simulation approach. In Part I, the methodological fundamentals will be developed which

will deal with microscopic models for both the longitudinal vehicle control and the lane-

changing behavior. The outline of the thesis is illustrated in Fig. 1.3.

Chapter 2 will introduce the Intelligent Driver Model (IDM) which has been pub-

lished by M. Treiber et al. in 2000 [123]. The IDM will be used as the basic car-following

model throughout the thesis because it realistically reproduces the observed phenomena

of freeway traffic. Moreover, the model parameters are all meaningful and therefore allow

for an intuitive description of different driving styles which will be needed in Part II. The

model’s acceleration function and its model parameters will be carefully investigated. The

properties of equilibrium traffic and collective instabilities will also be discussed.

In Chapter 3, a methodology to calibrate and validate a car-following model with

respect to empirical microscopic (floating car) data will be presented. By means of a

nonlinear optimization procedure based on a genetic algorithm, the IDM parameters will

be calibrated by minimizing the deviations between the observed driving dynamics and

the simulated trajectory with respect to the same leading vehicle. The calibration study

will show to what degree the IDM is able to reproduce human driving behavior and will

provide further insights into the model’s parameter space.

In Chapter 4, the Human Driver Model (HDM) will be presented as a general

framework for extending car-following models towards especially human characteristics

such as reaction time, perception errors, limited attention spans and different kinds of

9



1 Introduction

Traffic−adaptive

Chapters 8 and 9

Chapter 7 Chapter 7Chapter 6Chapter 5

Chapter 4Chapters 2 and 3

ACC modes

Road infrastructure,

Microscopic Dynamic traffic
conditions

Traffic simulation for evaluating impact of ACC vehicles on traffic capacity and stability

(lanes, bottlenecks)

and traffic demand traffic conditions
detection of local
Autonomous Automated driving

systems
strategy for ACC

Lane−changing

model MOBIL

Intelligent Driver 
Model (IDM) Model (HDM)

Human Driver

traffic dynamics

Figure 1.3: Illustration of the thesis structure. In Part I, the components needed for the devel-

opment of a microscopic multi-lane freeway simulator are introduced. Part II presents a concept

for extending ACC systems towards a strategy layer that adapts the ACC driving characteristics

to the local traffic situation which has to be detected autonomously by a detection model. The

impact of a given proportion of ACC-equipped vehicles on the traffic dynamics will directly be

evaluated (‘in-the-loop’) within the traffic simulation software.

human anticipation. Applying the concept to the IDM allows us to carefully distinguish

between reaction time, adaptation time and update time. By means of simulation, the

role of each of these times will be investigated with respect to instabilities of traffic flow.

The analysis of the model enables us to understand and to assess the impact of generically

human factors on the driving behavior. This research question will also be relevant against

the background of the operational differences between human drivers and automatically

controlled vehicles by means of ACC.

In addition to the task of longitudinal vehicle control, lane-changing behavior is an

important component of microscopic traffic simulators (Chapter 5). MOBIL8 will be

presented as a general decision model for lane changes. Apart from using accelerations as

utility measures for the attractiveness of a prospective lane change, the main novel feature

of the proposed lane-changing model lies in the taking into account of the (dis-)advantage

of the followers via a ‘politeness parameter’.

In Chapter 6, the developed software framework that integrates these model components

into a microscopic multi-lane simulator for freeway traffic will be summarized. The

simulator will be needed for the evaluation of the impact of ACC-equipped vehicles on the

resulting traffic dynamics in Part II (cf. Fig. 1.3).

8An acronym meaning ‘Minimizing Overall Braking Induced by Lane Changes’.
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1.3 Thesis Overview and Outline

In order to ensure that adaptive cruise control (ACC) systems (cf. Sec. 1.1) are imple-

mented in ways that improve, rather than degrade, traffic conditions, the thesis proposes

an extension of ACC towards traffic-adaptive cruise control with an actively jam-avoiding

driving strategy (Chapter 7). The novel concept of a traffic-adaptive cruise control

system will be introduced and the system components presented in detail. The three com-

ponents of the model are (i) the ACC itself, (ii) an algorithm for the automatic real-time

detection of the traffic situation based on local information, and (iii) a ‘strategy matrix’

that associates the autonomously detected traffic situation with different parameters of

the ACC, i.e., implements different driving characteristics. Optionally, inter-vehicle and

infrastructure-to-car communication can be used to improve the accuracy of determining

the traffic states.

The autonomous traffic-state detection requires surrounding traffic as input while the

ACC-equipped vehicles respond to the overall traffic dynamics. Consequently, the impact

of a given ACC proportion on the resulting traffic dynamics can only be studied by means

of microscopic traffic simulations. In Chapter 8, the impact of the proposed ACC

extension on the traffic dynamics will be investigated by means of simulations of a

freeway with different bottlenecks (more specifically, an on-ramp and an uphill gradient)

and different kinds of driver-vehicle units (such as cars and trucks). The simulations serve

as ‘proof of concept’ and give quantitative estimates for the effectiveness of the proposed

driving strategy on the relevant capacities. In particular, the question of how a variable

percentage of ACC-equipped vehicles influences the stability and capacity of traffic flow

is assessed.

In Chapter 9, the proportion of ACC-equipped vehicles will be systematically varied. The

relevant capacities of the system dynamics under free and congested traffic, namely, the

maximum free flow until the traffic flow breaks down (i.e., the maximum through-

put) and the dynamic capacity (i.e., the downstream outflow from traffic congestion)

will be evaluated. A summary of the findings and a discussion of potential applications

for future driver assistance systems will conclude the thesis (Chapter 10).
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Part I

Microscopic Modeling of Human and
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2 The Intelligent Driver Model

In this chapter, the Intelligent Driver Model (IDM) will be described which has been

published by Treiber, Hennecke and Helbing in 2000 [123, 153]. The IDM belongs to the

class of deterministic follow-the-leader models which are a subset of microscopic traffic

flow models as presented in Sec. 1.2 of the Introduction.

2.1 Acceleration Equation

A microscopic traffic flow model describes the motion of each individual vehicle. Car-

following models such as the IDM assume that the dominant influence on driving behavior

comes from the vehicle ahead, called the leading vehicle, cf. Fig. 2.1.

The IDM acceleration function v̇α(t) := dv
dt of each vehicle α is a continuous function of

the actual velocity vα(t), the net distance gap sα(t) = xα−1(t) − xα(t) − lα−1 and the

velocity difference ∆vα(t) to the leading vehicle of length lα−1:

v̇α(sα, vα, ∆vα) = a

[

1 −
(

vα

v0

)δ

−
(

s∗(vα, ∆vα)

sα

)2
]

. (2.1)

This expression is a superposition of the acceleration v̇free(v) = a[1−(v/v0)
δ] on a free road

and the braking deceleration −v̇int(s, v,∆v) = a(s∗/s)2 reflecting a repulsive interaction,

when vehicle α comes too close to the vehicle ahead. The deceleration term depends on

the ratio between the effective ‘desired minimum gap’

s∗(v,∆v) = s0 + vT +
v∆v

2
√

ab
(2.2)

and the actual gap sα. Here and throughout this thesis, we assume that the vehicle indices

α are ordered such that (α − 1) denotes the preceding vehicle. Notice that the velocity

difference is defined as approaching rate, ∆vα := vα − vα−1.

The minimum distance s0 in congested traffic is significant for low velocities only. The main

contribution in stationary traffic is the term vT which corresponds to following the leading

vehicle with a constant ‘safety time gap’ T .1 The last term is only active in non-stationary

1In the original definition of the IDM in Ref. [123], the Eq. (2.2) for s∗ contains an additional term

15



2 The Intelligent Driver Model

Length lα−1

α−1Velocity v

Following vehicle Leading vehicle α α−1

Position x α xα−1

Gap s

Velocity v

α

α

Figure 2.1: Illustration of the input quantities of a car-following model: The bumper-to-bumper

distance s for a vehicle α with respect to the vehicle (α − 1) (the ‘leader’) in front is given by

sα = xα−1 − xα − lα−1, where lα is the vehicle length and x the position on the considered road

stretch. The approaching rate (relative velocity) is defined by ∆vα := va − vα−1. Notice that the

vehicle indices α are ordered such that (α − 1) denotes the preceding vehicle.

traffic with ∆v 6= 0 and implements an ‘intelligent’ driving behavior including a braking

strategy that, in nearly all situations, limits braking decelerations to the ‘comfortable

deceleration’ b. Moreover, the IDM braking strategy guarantees collision-free driving. For

a detailed discussion, we refer to the following Sec. 2.2.

The IDM as defined in Eq. (2.1) has six parameters. For the sake of simplicity, we set

the acceleration exponent constant to δ = 4 throughout this thesis because this setting

corresponds to the most realistic acceleration behavior (see Sec. 2.2). The remaining five

IDM parameters, with typical values for freeway traffic together with their reasonable

ranges, are listed in Table 2.1. An important feature of the IDM are its few parameters

which additionally have an intuitive meaning. All parameters are measurable, and the best

values are in a realistic range.2 In Sec. 2.3 we will show that the fundamental relations

of homogeneous traffic are calibrated by adaptation of the desired velocity v0 (at low

densities), the safety time gap T (at high density) and the jam distance s0 (for jammed

traffic). In contrast to the stationary behavior, the stability properties of the IDM are

mainly determined by the maximum acceleration a, the desired deceleration b and by T .

Since the accelerations a and b do not influence the fundamental diagram, the IDM can be

calibrated essentially independently with respect to the behavior in stationary situations

and with respect to the stability of traffic flow.

If the distance to the leading vehicle sα is large, the interaction term v̇int is negligible

and the IDM equation reduces to the free-road acceleration v̇free(v) which is a decreasing

function of the velocity with the maximum value v̇(0) = a. The minimum value is v̇(v0) =

0. Figure 2.2 shows the IDM acceleration function (2.1) as a smooth function of the input

quantities s, v and ∆v. The model parameters are taken from Table 2.1. Since Eq. (2.1)

does not limit the IDM braking deceleration, we also incorporate a maximum physical

with a second ‘jam distance’ parameter s1, namely s1

p

v/v0. We ignore this term by setting s1 = 0
throughout this thesis. Note that a nonzero s1 would be necessary for features requiring an inflection
point in the fundamental diagram, cf. Sec. 2.3 below.

2For matters of illustration, we refer to Chap. 3, in which the IDM parameters are automatically calibrated
and validated with respect to microscopic floating car data.
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2.2 Dynamic Single-Vehicle Properties

IDM Parameter Typical value Reasonable range

Desired velocity v0 [km/h] 120 50 – 200

Safety time gap T [s] 1.5 0.9 – 3

Jam distance s0 [m] 2.0 1 – 5

Maximum acceleration a [m/s2] 1.4 0.3 – 3

Desired deceleration b [m/s2] 2.0 0.5 – 3

Table 2.1: Model parameters of the Intelligent Driver Model (IDM) together with typical settings

and reasonable parameter ranges for different kinds of driver-vehicle units and driving situations.

The acceleration parameter is set to δ = 4. Notice that the absolute value of braking decelerations

is usually larger than that of accelerations which is limited by the maximum motorization and the

desired and comfortable acceleration of the the individual driver.

deceleration of bmax = 9 m/s2 corresponding to blocking wheels on dry roads, i.e., we limit

v̇α from below to the value −bmax, see Fig. 2.2. Notice that this limit typically is not

reached in single-lane simulations, but sometimes in multi-lane traffic simulations where

the input quantities s and ∆v might change abruptly due to lane changes.

We consider another refinement of the IDM for the case when the actual velocity is larger

than the desired velocity, v > v0. For example, an excess of v = 2v0 would lead to an

unrealistic braking of −15a for δ = 4. This situation may occur when simulating, e.g.,

a speed limit on a road segment that reduces the desired velocity locally. Therefore, we

replace the free acceleration for the case v > v0 by

v̇free(v) = −b

[

1 −
(v0

v

)δ
]

, (2.3)

i.e., the IDM vehicle brakes with the comfortable deceleration b in the limit v ≫ v0.

2.2 Dynamic Single-Vehicle Properties

The IDM acceleration function (2.1) is a continuous function of the input quantities s, v

and ∆v. Let us now discuss the dynamic properties of a single IDM driver-vehicle unit by

considering the following limiting cases:

(1) Acceleration to the desired velocity: If the distance s is large (corresponding to the

situation of a nearly empty road), the interaction v̇int is negligible and the IDM equation

reduces to the free-road acceleration v̇free(v) = a
[
1 − (v/v0)

δ
]
. The driver accelerates to
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2 The Intelligent Driver Model
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Figure 2.2: Acceleration function (2.1) of the Intelligent Driver Model (IDM) as a function of the

net distance to the leading vehicle, s and the actual velocity v while keeping ∆v = 0 constant (left

diagram), and as a function of s and the velocity difference ∆v at a constant speed of v = 20m/s =

72 km/h (right diagram). The contour lines indicate changes in the acceleration of 1m/s2. The

constant velocity state v̇ = 0 is marked by a thicker contour line. The IDM parameters are taken

from the Table 2.1. The maximum deceleration is limited to 9m/s2.

his or her desired velocity v0 with the maximum acceleration v̇(0) = a. The acceleration

exponent δ specifies how the acceleration decreases when approaching the desired velocity.

The limiting case δ → ∞ corresponds to approaching v0 with a constant acceleration a

while δ = 1 corresponds to an exponential relaxation to the desired velocity with the

relaxation time τ = v0/a. In the latter case, the free-traffic acceleration is equivalent to

that of the optimal velocity model [3]. However, the most realistic behavior is expected

in between the two limiting cases of exponential acceleration (for δ = 1) and constant

acceleration (for δ → ∞). Therefore, we set the acceleration exponent constant to δ = 4

throughout this thesis.

In Fig. 2.3, acceleration periods from a standstill to the desired velocity v0 = 120 km/h are

simulated for two different settings of the maximum acceleration (the other model param-

eters are listed in Table 2.1): For a = 1.4 m/s2, the acceleration phase takes approximately

40 s while an increased maximum acceleration of a = 3 m/s2 reduces the acceleration pe-

riod to ∼ 15 s. Notice that the acceleration parameter a of 1.4 m/s2 (3 m/s2) corresponds

to a free-road acceleration from v = 0 to v = 100 km/h within 23 s (10.5 s).

(2) Equilibrium traffic: In dense equilibrium traffic corresponding to stationary con-

ditions with v̇ = 0 and v . v0/2, drivers follow each other at a constant distance

se(v) ≈ s∗(v, 0) = s0 + vT . This distance is equal to a small contribution s0 denoting a

minimum bumper-to-bumper distance kept in standing traffic, plus a velocity-dependent

contribution vT corresponding to a safety time gap T . The equilibrium properties of the

IDM are discussed in more detail in Sec. 2.3 below.
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2.2 Dynamic Single-Vehicle Properties
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Figure 2.3: Simulation of a single IDM vehicle: The diagrams show the acceleration to the desired

velocity v0 = 120 km/h followed by braking as reaction to a standing obstacle located 3000m ahead

for several combinations of the IDM acceleration parameters a [in diagram (a)] and b [in (b)]. The

remaining parameters are listed in Table 2.1 on page 17.

(3) Braking as reaction to high approach rates: When approaching slower or standing

vehicles with sufficiently high approaching rates (∆v > 0), the equilibrium part s0 + vT

of the dynamical desired distance s∗, Eq. (2.2), can be neglected with respect to the

non-equilibrium part which is proportional to v∆v. Notice that the restriction to the

interaction term with neglecting vT and s0 corresponds to a worst-case scenario. Then,

the interaction part −v̇int = a(s∗/s)2 of the acceleration equation (2.1) is given by

v̇int(s, v,∆v) ≈ (v∆v)2

4bs2
. (2.4)

When assuming a constant deceleration during the whole approaching process towards a

standing obstacle (∆v = v), a minimum kinematic deceleration bkin = v2/(2s) would be

necessary to avoid a collision, leading to

v̇int(s, v,∆v = v) ≈ b2
kin

b
. (2.5)

The situation is assumed to be ‘under control’, if bkin is smaller than the ‘comfortable’

deceleration given by the model parameter b, i.e., β := bkin/b ≤ 1. With this definition,

Eq. (2.5) results in v̇int = βbkin < bkin. The IDM brakes less than bkin and therefore in

an anticipative way. With increasing β, the IDM deceleration approaches bkin. Figure 2.3

demonstrates this behavior by means of a simulation: The IDM vehicles with two different

settings for b approach a standing obstacle located 3000 m ahead and brakes for t > 70 s.

As expected, the maximum decelerations are lower than, but of the same order as, the
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2 The Intelligent Driver Model

comfortable deceleration b.

(4) Braking in emergency situations: In contrast to the situation (3), an emergency sit-

uation is characterized by bkin > b or β > 1, leading to v̇int > bkin. Under the deceleration

law (2.5), we get for the considered situation of approaching a standing obstacle

v̈int =
d

dt

[
v4

4bs2

]

=
v5

2b2s3
(bkin − b) . (2.6)

Thus, the IDM deceleration increases in an emergency case in order to get the situation

under control again. Notice that, for s → 0, the braking interaction grows even stronger

because of v̈int → ∞. Furthermore, Eq. (2.6) shows that the acceleration approaches

v̇ = −b in both cases of β > 1 and β < 1. This driving strategy of the IDM can be

characterized as an ‘intelligent’ braking behavior which makes the model collision-free.

(5) Braking in response to small gaps: This driving mode is active when the gap is

much smaller than the ‘desired gap’ s∗, but there are no large velocity differences. Then,

the equilibrium part of s∗, s0 + vT , dominates the dynamic contribution proportional

to ∆v. Neglecting the free-road acceleration, the IDM acceleration (2.1) reduces to v̇ ≈
−a(s0 + vT )2/s2, corresponding to a Coulomb-like repulsion.

Figure 2.4 shows the car-following dynamics in this regime. For the standard parameters

listed in Table 2.1, one clearly sees a non-oscillatory relaxation to the equilibrium distance

while for very high values of b (e.g., b = 10 m/s2), the approach to the equilibrium distance

would occur with damped oscillations. Notice that, for the latter parameter set, the

collective traffic dynamics would already be extremely unstable, cf. Sec. 2.4.

2.3 Equilibrium Traffic and Fundamental Diagram

Equilibrium traffic is defined by vanishing velocity differences and accelerations of the

driver-vehicle units α, i.e.,

∆vα = 0, (2.7)

dvα

dt
= 0, (2.8)

and
dvα−1

dt
= 0. (2.9)

Under these stationary traffic conditions, drivers tend to keep a velocity-dependent equi-

librium gap se(vα) to the leading vehicle. In the following, we consider a homogeneous
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Figure 2.4: Velocity reduction and following adaptation of an IDM vehicle in response to a gap

that is initially too small. The upper diagram shows the time series of the gap s(t) and the lower

diagram shows the velocity v(t) of a single vehicle following a vehicle that drives at a constant

speed of 60 km/h corresponding to an equilibrium distance of se = 28m (displayed as a thin

straight line). The initial conditions at t = 0 s are v(0) = 60 km/h and s(0) = se/2 = 14m. The

three curves demonstrate the effect of different settings for the comfortable deceleration parameter

b: For b ≤ 4m/s2, the braking reaction leads to a non-oscillatory relaxation to the equilibrium

distance while for the (unrealistically) high value b = 10m/s2, the approach to se occurs with

damped oscillations. The other parameters used in the simulation are listed in Table 2.1.

ensemble of identical driver-vehicle units corresponding to identical parameter settings.

Then, the IDM acceleration equation (2.1) with the constant setting δ = 4 simplifies to

se(v) =
s0 + vT

√

1 −
(

v
v0

)4
. (2.10)

The equilibrium distance only depends on the minimum jam distance s0, the safety time

gap T and the desired velocity v0. The diagrams (a) and (b) in Figure 2.5 show the equilib-

rium distance as a function of the velocity, se(v), for different v0 and T parameter settings

while keeping the minimum distance constant to s0 = 2 m. In particular, the equilibrium

gap of homogeneous congested traffic (with v ≪ v0) is essentially equal to the desired

gap, se(v) ≈ s∗(v, 0) = s0 + vT , i.e., it is composed of the minimum bumper-to-bumper

distance s0 kept in standing traffic and an additional velocity-dependent contribution vT

corresponding to a constant safety time gap T as shown in the diagrams by straight lines.

For v → 0, the equilibrium distance approaches the minimum distance s0. If the velocity

is close to the desired velocity, v ≈ v0, the equilibrium distance se is clearly larger than

the distance vT according to the safety time gap parameter. For v → v0, the equilibrium

distance diverges due to the vanishing denominator in Eq. (2.10). That is, the free speed
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Figure 2.5: Equilibrium distance se(v) according to Eq. (2.10) (top), and equilibrium time gap

Te(v) (bottom) according to Eq. (2.11) as functions of the velocity for different settings of the

desired velocity v0 and the safety time gap T . The deviations from the dashed lines are discussed

in the main text. The other parameters are those displayed in Table 2.1. Notice that the curve

se(v) corresponds directly to the contour line for zero acceleration in Fig. 2.2 (i.e., v̇ = 0).

is reached exactly only on a free road.

Additionally, for the interpretation of the safety time gap T , we consider the equilibrium

time gap,

Te(v) =
se(v)

v
, (2.11)

displayed in the diagrams (c) and (d) of Fig. 2.5. Obviously, the actually observed time gap

is always larger than the value of the IDM parameter, Te > T . For comparison, notice that

T is displayed as a straight line in the plots. For low velocities, we have Te ≃ T +s0/v, i.e.,

the effective time gap is mainly determined by s0. For higher velocities, the denominator of

Eq. (2.10) is always smaller than 1, with a divergence in the limit v → v0. For intermediate

velocities, the effective time gap is approximately 10–20% larger than vT depending on

the setting of s0.

In the literature, the equilibrium state of homogeneous and stationary traffic is often

formulated in macroscopic quantities such as traffic flow Q, (local) average velocity V and

traffic density ρ. The translation from the microscopic net distance s into the density is
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2.4 Collective Traffic Instability

given by the micro-macro relation

s =
1

ρ
− l, (2.12)

where l is the vehicle length. In equilibrium traffic, ρ is therefore given by se, the mean

velocity is simply V = ve and the traffic flow follows from the hydrodynamic relation

Q = ρ V. (2.13)

So, the equilibrium velocity ve is needed as a function of the distance se. An analytical

expression for the inverse of Eq. (2.10), i.e., the equilibrium velocity as a function of the

gap, ve(s), is only available for the acceleration exponents δ = 1, 2 or δ → ∞ [123].

For δ = 4, we only have a parametric representation ρ(v) with v ∈ [0, v0] resulting from

Eqs. (2.12) and (2.10). Figure 2.6(a) and (b) show the equilibrium velocity-density relation

Ve(ρ) for the same parameter settings as in Fig. 2.5. The assumed vehicle length l = 5 m

together with the minimum jam distance s0 = 2 m results in a maximum density ρmax =

1/(s0+l) ≈ 143 vehicles/km. Using the relation (2.13), we obtain the so-called fundamental

diagram between the traffic flow and the vehicle density, Q(ρ) = V ρ(v) which is displayed

in Fig. 2.6(c) and (d). Notice that Q is typically given in units of vehicles per hour and

the density ρ in units of vehicles per km.

According to Eqs. (2.10) and (2.12), the fundamental relations of homogeneous traffic

depend on the desired velocity v0 (low density), the safety time gap T (high density)

and the jam distance s0 (jammed traffic). In the low-density limit ρ ≪ 1/(v0T ), the

equilibrium flow can be approximated by Q ≈ v0ρ. In the high density regime, one has a

linear decrease of the flow,

Q(ρ) ≈ 1 − ρ(l + s0)

T
, (2.14)

which can be used to determine the effective length l + s0 and T . Notice that the vehicle

length is not a model parameter but only a scaling quantity that determines the (static)

maximum density ρmax together with the IDM parameter s0.

2.4 Collective Traffic Instability

Let us finally investigate the collective traffic dynamics of many driver-vehicle units on a

road section. Under certain conditions and especially on freeways, the collective dynamics

resulting from vehicle interactions can cause traffic instabilities, leading to the breakdown

of traffic flow.

By simulation of a platoon of IDM vehicles following an externally controlled lead vehicle,

we will now investigate the nonlinear dynamics that leads to a transition from free to

congested traffic. We assume that the externally controlled first vehicle drives at vlead =
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Figure 2.6: Equilibrium velocity-density relations of the IDM (top) and corresponding flow-density

relations, so-called fundamental diagrams (bottom). The equilibrium properties depend on the

minimum distance s0 (here set to 2m), the desired velocity v0 (here displayed for 120 and 80 km/h)

and the time gap T (here 1.0, 1.5 and 2.0 s). The safety time gap is the most important parameter

determining the maximum flow (stationary freeway capacity).

80 km/h, and the drivers follow each other at their equilibrium distance se ≈ 39.4 m. At

t = 110 s, the first vehicle decelerates with −2 m/s2 for a time period of 5 s. This braking

maneuver reduces the velocity to vlead = 44 km/h and serves as initial perturbation. At

t = 120 s, the first vehicle accelerates again to the former velocity of 80 km/h which is

maintained for the rest of the simulation time. In order to study the influence on the

traffic (in)stability, we vary the setting for the maximum acceleration a while the other

IDM parameters used in these simulations are taken from Table 2.1.

Figure 2.7 shows the time series v(t) and v̇(t) of the driving maneuvers of the externally

controlled vehicle and the reaction of some selected vehicles further upstream in a one-lane

scenario. Depending on the setting of the maximum acceleration, the collective dynamics

is stable (see Figs. 2.7(a) and (b) for a = 1.4 m/s2) or unstable (see Figs. 2.7(c) and (d)

for a = 0.4 m/s2).

For the simulation corresponding to unstable traffic, the trajectories xα(t) of all vehicles α

in the platoon are displayed in a time-space diagram shown in Fig. 2.8. The trajectory di-

agram shows the spatiotemporal emergence of a stop-and-go wave triggered by the braking
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Figure 2.7: Time series v(t) and v̇(t) for some vehicles of a platoon (car 1, 2, 5, 10, 25, 50 and

100) of identical IDM vehicles following an externally controlled lead vehicle. At t = 110 s, the first

vehicle brakes with a constant deceleration of −2m/s2. This initial perturbation is followed by a

similar constant acceleration at t = 120 s, leading again to the former speed of vlead = 80 km/h. The

simulation corresponding to the acceleration parameter a = 1.4m/s2 results in a stable collective

traffic dynamics [diagrams (a) and (b)] while a reduction to a = 0.4m/s2 [diagrams (c) and (d)]

leads to an unstable dynamics which is characterized by increasing braking decelerations. Finally,

vehicles further upstream in the platoon even decelerate to a standstill which is associated with

the emergence of a stop-and-go wave. The other IDM parameters are taken from Table 2.1.

maneuver of the first vehicle at (t = 110 s, x = 13.5 km). Initially, the (small) perturbation

travels further downstream. After a while, the (increased) perturbation starts propagat-

ing upstream, i.e., against the driving direction of the vehicle flow. This can be explained

by the time delays that drivers need to react to the changing traffic situation: After the

initial braking, the following driver needs some time to respond to this new situation by

decelerating him- and herself. Thus, at the time she slowed down to the new velocity,

the actual distance is lower than the required safety distance. Therefore, additional brak-

ing is necessary, leading to a lower velocity than the one of the vehicle introducing the

perturbation. Moreover, the time to re-accelerate to the eventually restored speed of the

leading vehicle takes even more time due to the limited acceleration capabilities. This

response mechanism acts like a ‘vicious circle’: Each following driver has to reduce his or

her velocity a bit more to regain the necessary safety distance which eventually leads to a

standstill of some successive vehicles, i.e., to the emergence of a stop-and-go wave.

This deterministic mechanism leading to collective traffic instabilities due to finite acceler-

ation capabilities is illustrated in Fig. 2.8. The maximum acceleration a corresponds to a

velocity adaptation time of the order of τv = v0/(4a). Thus, traffic becomes more unstable
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Figure 2.8: Time-space diagram of every second IDM trajectory xα(t) corresponding to the results

shown in Fig. 2.7(c) and (d) with an unstable setting of a = 0.4m/s2. In the simulation, a stop-

and-go wave is emerging from the initial perturbation of the externally controlled first vehicle. The

propagation speed of the stop-and-go wave against the driving direction is Vg = ∆x/∆t ≈ 13 km/h.

for decreasing values of a (increasing τv) because drivers re-adapt slower to the equilibrium

speed after the triggered perturbation.3 The propagation velocity of the downstream front

of the stop-and-go wave can be determined from the time-space diagram as approximately

13 km/h which is in good agreement with empirical observations [54, 13] and the IDM is

therefore able to reproduce this self-organized property of traffic flows. Notice that the

propagation speed is arguable constant (15 ± 5 km/h) all over the world.

2.5 Summary

This chapter introduces the Intelligent Driver Model (IDM) [123] which serves as basic

model for this thesis. Let us summarize the essential model properties:

• The IDM acceleration is a smooth and continuous function incorporating different

driving modes for all velocities in freeway traffic as well as city traffic. Besides

3In Chap. 4, we will show that the instability mechanism is robust with respect to typical (acceleration)
fluctuations, and to a heterogeneous mixture of driver-vehicle units with statistically distributed values
of T and v0. For a more detailed analysis of the mechanisms of traffic instabilities, we refer to Sec. 4.2,
where we also take into account reaction times and finite update times.
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the distance to the leading vehicle and the actual velocity, the IDM also takes into

account velocity differences, which play an essential stabilizing role in real traffic,

especially when approaching traffic jams. Furthermore, considering velocity differ-

ences is necessary for a collision-free driving dynamics. The IDM is defined by its

acceleration function introduced in Sec. 2.1.

• The IDM contains only a few parameters which all have a reasonable interpretation,

are known to be relevant and are empirically measurable. Moreover, the fit param-

eters have realistic values which will be shown in Chap. 3 by means of calibration

with respect to microscopic traffic data.

• The IDM has different regimes for braking and accelerating and shows a plausible

microscopic acceleration and deceleration behavior of single driver-vehicle units as

discussed in Sec. 2.2. The considered limiting cases offer clear interpretations of the

model parameters.

• In equilibrium traffic, the IDM has a velocity-dependent equilibrium gap to the

preceding vehicle corresponding to a unique flow-density relation, the so-called fun-

damental diagram (cf. Sec. 2.3). Moreover, it has been shown that the fundamental

diagram and the stability properties of the IDM can be easily (and separately) cali-

brated to macroscopic empirical data.

• The IDM has been successful in reproducing the characteristic features of macro-

scopic traffic phenomena such as traffic breakdowns, the capacity drop, the scatter-

ing in the fundamental diagram and the propagation of stop-and-go waves or other

patterns of congested traffic [123]. Moreover, the IDM shows realistic values of self-

organized properties like the propagation velocity of localized clusters or the outflow

from jams [54]. In Sec. 2.4, we have investigate in detail the collective dynamics and

traffic instability which leads to the emergence of stop-and-go waves.

Let us finally illustrate the concept of follow-the-leader traffic models in terms of control

theory. Figure 2.9 illustrates the nonlinear feedback loop of car-following models: The

controllers are associated with the driver-vehicle units, the quantity to be controlled is

the velocity of the own vehicle (or the distance to the leading vehicle), and the input

stimuli are the observed distances and velocities, respectively. The nonlinear acceleration

(gain) function (2.1) controls the actions to reach desired velocities or distances by means

of accelerating or braking. Let us note that we have to solve the coupled system of

nonlinear ordinary differential equations for a given set of driver-vehicle units. The IDM

can be efficiently integrated numerically using a ‘modified Euler’ integration scheme. For

numerical details, we refer to Chap. 6 on page 101.
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Figure 2.9: Elements of the nonlinear feedback loop of the vehicle dynamics described by car-

following models: The actions of the driver-vehicle units α include (i) the input stimuli with

respect to the leading vehicle, (ii) the acceleration (gain) function and (iii) two integrative elements.

Notice that the velocity and the distance to the leader is the control quantity, respectively, while

the nonlinear gain function calculates the instantaneous acceleration v̇(t).
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As microscopic traffic flow models are mainly used to describe collective phenomena such

as traffic breakdowns, traffic instabilities and the propagation of stop-and-go waves, these

models are traditionally calibrated with respect to macroscopic traffic data, e.g., one-

minute flow and velocity data collected by double-loop detectors.

Nowadays, as microscopic traffic data have become more and more available, the problem

of analyzing and comparing microscopic traffic flow models with real microscopic data has

raised some interest in the literature [95, 90, 12, 97, 11, 112, 77]. Besides single-vehicle

data of stationary detectors, the two main data categories are trajectory data and floating

car data: Trajectory data contain the time series of the longitudinal motion xα(t) of each

vehicle α in an observed spatiotemporal area. As an example, Fig. 2.8 shows trajectory

data generated from a microscopic simulation of the IDM. Empirical vehicle trajectory

data are extracted from high-frequency digital images or videos that are recorded from

an elevated observer position, e.g., from a helicopter [48] or a high-rise building [154]. In

addition, the lateral motion yα(t) and, in particular, the driving lane can be determined

as well. Trajectory data contain the complete information of all vehicles on a certain road

section. All surrounding vehicles in the neighboring lanes are known. On the other hand,

the data collection is expensive and often limited to road sections smaller than 1 km.

Floating car data (FCD) are recorded by vehicles that ‘float’ with the traffic and serve as

measuring stations. These vehicles are equipped with sensors and record variables such

as speed and position for a particular trip. Based on this data, the vehicles compute

a microscopic, local traffic situation which can be transmitted to the control center via

mobile communication (e.g., cellular) networks [58]. If the vehicle is additionally equipped

with an ACC system (cf. Sec. 1.1 on page 3), the distance to the car ahead and its velocity

are also measured by the radar sensor at high temporal resolution. This measurement

method facilitates observations over a long time interval. On the other hand, next-nearest

neighbors and vehicles in the neighboring lanes are not gathered in contrast to trajectory

data.

Since the primary task of a car-following model is to reproduce realistic car-following be-

havior, it is straightforward to compare a microscopic traffic model with the empirically

measured driving behavior of human drivers which can be determined from both types of

microscopic data. A car-following model describes the motion of the following vehicle in
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response to the leading vehicle, so that it is possible to compare empirical with computed

data of followers. Deviations between measured and simulated gaps are used to calibrate

and validate the model. So, the following question arises: How well can a microscopic

model reproduce the individual driving behavior? By a calibration study, we will now de-

termine the optimal model parameters of the Intelligent Driver Model (IDM) that describe

the FCD data best.

In Sec. 3.1, the FCD sets used for our calibration will be described in detail. Then, a

method for adopting a car-following model to empirical FCD will be developed (Sec. 3.2).

The setup for the microscopic calibration and the used objective functions will be discussed

in Sec. 3.3. Section 3.4 describes the approach used to optimize the model parameters

which is based on a genetic algorithm. Section 3.5 presents the calibrated IDM parameters.

In a second step, the IDM will be validated by applying the calibrated parameter settings

to the other FCD sets (Sec. 3.6). We conclude with a discussion of the results.

3.1 Floating Car Data Sets

For the following calibration study, we use three publicly available FCD sets that have been

provided by the Robert Bosch GmbH [145]. The time series have been recorded in 1995

during an afternoon peak hour on a fairly straight one-lane road in Stuttgart, Germany.

Unfortunately, the data sets do not give information about the individual drivers. The

data have been recorded by a car equipped with a radar in front providing the relative

speed and distance to the car ahead. The relative speed of the vehicle in front is measured

directly via the Doppler effect. The data are recorded with a frequency of 10 Hz, i.e.,

with a time increment of 0.1 s. The device is hardly visible to other drivers (cf. Sec. 1.1).

Some analysis can be found in the dissertation of Witte [134]. More details on the data

processing are described in the doctoral thesis of Bleile [5].

Figure 3.1 shows the three time series used for the microscopic calibration and validation.

The duration of the measurements are 250 s, 400 s and 300 s, respectively. All data sets

show complex situations of daily city traffic with several acceleration and deceleration

periods. All data sets even contain standstills due to traffic lights. The first two FCD sets

are most of the time limited to low velocities below approximately 20 km/h, corresponding

to small distances s . 15 m. In the FCD set 3, the velocity varies in the range between

0 km/h and 60 km/h.

However, the differences in the velocity between the leader and the follower are small in

all data sets. The accelerations a(t) derived from the velocity by numerical differentiation

are within a reasonable range of approximately [−2, 2] m/s2. Note that the FCD sets only

contain car-following behavior without a free acceleration to the desired velocity. More-
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Figure 3.1: Velocity and net distance time series for three floating car data (FCD) sets recorded

by the Robert Bosch GmbH in 1995. The data is publicly available via the DLR Clearing House

website [145]. The sets show city traffic with several standstills due to traffic lights. The data set 3

exhibits a jump in the distance from approximately 20m to 40m at t ≈ 144 s because the front car

turned away.

over, the third FCD set exhibits a jump in the distance to the leader from approximately

20 m to 40 m at t ≈ 144 s because the front car turned its direction.

3.2 Simulation Setup

Primarily, a car-following model describes the individual driving behavior in terms of the

actual acceleration in response to the driving behavior of the leading vehicle (cf. Chap. 2).

In the FCD sets discussed in the previous section, the velocity difference was measured

(independently) by the follower. Since the velocity of the following FCD vehicle and the

velocity difference are measured with high accuracy, the velocity of the leading car can

approximately be determined as well. So, these data allow for a direct comparison between

the measured driver behavior and trajectories simulated by a car-following model with

the leading vehicle serving as externally controlled input. Initialized with the empirically
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given distance and velocity differences, the microscopic model is used to compute the

acceleration and, from this, the trajectory of the following car. The deviations between

the empirically measured and simulated gaps are then used to calibrate and validate the

model parameters.

The simulation setup directly corresponds to the car-following situation depicted in Fig. 2.1

on p. 16. More specifically, the car-following model defines the acceleration v̇sim(t) as a

function of the own velocity vsim(t), the gap to the leading vehicle ssim(t) and the velocity

of the leader vdata
lead (t),

v̇sim(t) = v̇(ssim, vsim, vdata
lead ). (3.1)

While vdata
lead is externally given, the velocity of the simulated vehicle and its distance to

the leader are derived from the simulated acceleration function by integration:

vsim(t) =

t∫

0

v̇sim(t′) dt′ and xsim(t) =

t∫

0

vsim(t′) dt′. (3.2)

Analogously, the trajectory of the leading vehicle in the simulation is given by the inte-

grated velocity provided by the floating car data,

xdata
lead (t) =

t∫

0

vdata
lead (t′) dt′. (3.3)

The net distance to the leading vehicle is then given by the difference between the simulated

trajectory xsim(t) and the given position of the rear bumper of the leading vehicle xdata
lead (t):

ssim(t) = xdata
lead (t) − xsim(t). (3.4)

This can be directly compared to the gap sdata(t) provided by the data. As initial condi-

tions for the Eqs. (3.2), the velocity and distance to the leading vehicle at the beginning

of a simulation run are taken from the empirical data:

vsim(t = 0) = vdata(0) and ssim(t = 0) = sdata(0). (3.5)

In addition, the distance ssim(t) has to be reset to the value of the FCD when the leading

object changes as a result of a lane change of one of the considered vehicles. For example,

the leading vehicle of the FCD set 3 in Fig. 3.1 turns to another lane at t ≈ 144 s which

leads to a jump in the net distance. At other times, the distance of the FCD is not used

in the simulation. For the numerical integration in the simulation, we use the explicit

integration scheme described in Chap. 6.
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3.3 Error Measures

3.3 Error Measures

The calibration process aims at minimizing the difference between the measured driving

behavior and the driving behavior simulated by the car-following model under consid-

eration. Basically, any quantity can be used as error measure that is not fixed in the

simulation, such as the velocity, the velocity difference or the net distance. In the follow-

ing, we use the error in the net distance s(t) for conceptual reasons: When optimizing

with respect to s, the average velocity errors are automatically reduced as well. This does

not hold the other way round, as the error in the distance may incrementally grow when

optimizing with respect to differences in the velocities vsim(t) and vdata
follow(t).

For the parameter optimization, we need an objective function as a quantitative measure

of the error between the simulated and observed trajectories. As the objective function

has a direct impact on the calibration result, we consider three different error measures.

The relative error is defined as a functional of the empirical and simulated time series,

sdata(t) and ssim(t):

Frel[s
sim] =

√
√
√
√

〈(
ssim − sdata

sdata

)2
〉

. (3.6)

Here, the expression 〈·〉 means the temporal average of a time series z(t) of duration ∆T ,

i.e.,

〈z〉 :=
1

∆T

∆T∫

0

z(t) dt. (3.7)

Since the relative error is weighted by the inverse distance, this measure is more sensitive

to small distances s than to large distances. As example, a simulated gap of 10 m compared

to a distance of 5 m in the empirical data results in a large error of 100%, whereas the

same deviation of 5 m leads to an error of 5% only for a spacing of, for instance, 100 m

which is typical for large velocities.

In addition, we define the absolute error as

Fabs[s
sim] =

√

〈(ssim − sdata)2〉
〈sdata〉2

. (3.8)

As the denominator is averaged over the whole time series interval, the absolute error

Fabs[s
sim] is less sensitive to small deviations from the empirical data than Frel[s

sim].

However, the absolute error measure is more sensitive to large differences in the numerator,

i.e., for large distances s. Note that we have normalized both, the relative and the absolute

error in order to make it independent of the duration ∆T of the considered time series. It

also allows for a direct comparison between both error measures.
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As the absolute error systematically overestimates errors for large net distances (at high

velocities), while the relative error systematically overestimates deviations of the observed

headway in the low velocity range, we have also studied a combination of both error

measures. For this, we have defined the ‘mixed error measure’

Fmix[s
sim] =

√

1

〈|sdata|〉

〈
(ssim − sdata)2

|sdata|

〉

. (3.9)

The dependence of the calibration results on the respective error measure is investigated

in Sec. 3.5.

3.4 Nonlinear Optimization with a Genetic Algorithm

The calibration procedure aims at minimizing the differences between the floating car

trajectories of human drivers and the simulated headways of a car-following model with

a fixed parameter set. Finding an optimal parameter set of a car-following model with a

nonlinear acceleration function such as the IDM, cf. Eq. (2.1), corresponds to a nonlinear

optimization problem. In order to numerically find an approximative solution, we apply a

genetic algorithm as a search heuristic. Genetic algorithms (GA) are a particular class of

evolutionary algorithms that use techniques inspired by evolutionary biology such as in-

heritance, mutation, selection and recombination [?, 156]. The implemented GA proceeds

as follows (cf. Ref. [155]):

• The evolution starts with a population of randomly generated ‘individuals’. In each

generation, an entirely new population of individuals is created, based on the fitness

scores of the members of the old generation. In our application, an ‘individual’

represents a parameter set of a car-following model and a population consists of

N such sets. In contrast to the traditional representation of individuals by binary

strings (‘genome’), we treat a parameter as a real number.

• In each generation, the fitness of each individual in the population is evaluated. The

fitness of an individual is determined via one of the objective functions proposed in

Sec. 3.3. More specifically, the scaled fitness score is obtained from the objective

score F by calculating the reciprocal value of F2. In addition, a penalty value is

added for any vehicle collision during a simulation run.

• In the selection process, two individuals are stochastically selected from the current

population, based on their fitness score and recombined to generate a new individual.

After this recombination, the model parameters of the selected individuals are also

randomly selected. In addition, the best individual is kept without any modification
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3.5 Calibration Results for the Intelligent Driver Model

to the next generation (elitism). Subsequently, the genes of all individuals, i.e.,

their model parameters, are varied randomly corresponding to a mutation that is

controlled by a given probability. The resulting new generation is then used in the

next iteration of the GA. For reasons of numerical efficiency, the parameter values

are chosen within reasonable, user-defined limits.

• The termination criterion is implemented as a two-step process: Initially, a fixed

number of generations is evaluated. Then, the evolution terminates after convergence

which is specified by a constant best-of-generation score for at least a given number

of generations.

The presented optimization algorithm is obviously less efficient than a conjugate gradient

method such as the Nelder-Mead algorithm [86] which approximately finds an optimized

parameter set if the objective function varies smoothly. However, like all general-purpose

multidimensional optimization algorithms (without stochastic components), Nelder-Mead

occasionally gets stuck in a local minimum. In contrast, the presented GA approach which

is less specific in the search direction allows to escape from (small) local optima.

3.5 Calibration Results for the Intelligent Driver Model

In this section, we calibrate the Intelligent Driver Model (IDM) [123] to the three FCD sets

presented in Sec. 3.1, using the nonlinear optimization algorithm discussed in the previous

section. The simulation setup and the objective functions have already been introduced

in Sec. 3.2. In order to restrict the parameter space for the optimization to reasonable

and positive parameter values, we apply the following constraints for the minimum and

maximum values: The desired velocity v0 is restricted to [1, 70] m/s, the safety time gap

T to [0.1, 5] s, the minimum distance s0 to [0.1, 8] m, the maximum acceleration a and the

comfortable deceleration b to [0.1, 6] m/s2. Note that the acceleration exponent δ = 4 was

kept constant as usual (see cf. Chap. 2).

The calibration results for the three FC data sets (see Fig. 3.1) and the considered three

objective functions F (Eqs. (3.6), (3.8) and (3.9)) are summarized in Table 3.1. Obvi-

ously, the calibrated IDM parameters vary from one FC data set to another, but they

also vary with the considered objective function. Remarkably, all parameter values ob-

tained from the calibration to the empirical data are of the correct size and within the

expected parameter range. Particularly, the IDM parameter for the safety time gap T

(1 s . . . 1.5 s), the minimum distance s0 (1.25 m . . . 3.5 m) and the maximum acceleration a

(1 m/s2 . . . 1.5 m/s2) turn out to be robust with respect to different driving situations and

different objective functions. The resulting traffic dynamics for simulation runs with the

calibrated IDM parameters are validated in Sec. 3.6.

35



3 Model Calibration and Validation

FCD set 1 FCD set 2 FCD set 3

Measure Frel[s] Fmix[s] Fabs[s] Frel[s] Fmix[s] Fabs[s] Frel[s] Fmix[s] Fabs[s]
Error [%] 24.1 20.8 20.7 28.7 26.2 25.7 18.0 13.0 11.2

v0 [m/s] 69.9 70.0 70.0 70.0 70.0 68.9 16.0 16.1 16.2
T [s] 1.08 1.12 1.03 1.52 1.44 1.23 1.30 1.31 1.35
s0 [m] 2.39 2.35 2.59 2.62 2.79 3.50 1.60 1.52 1.25

a [m/s
2
] 1.01 1.23 1.43 0.953 0.973 1.09 1.58 1.56 1.55

b [m/s
2
] 3.23 3.10 3.91 0.590 0.993 1.17 0.761 0.626 0.605

Table 3.1: Calibrated IDM parameters for three different floating car (FC) data sets and three

different objective functions F . The calibration error is between 11% and 29%. The IDM accel-

eration exponent δ = 4 has been kept constant. All IDM parameters except v0 show reasonable

values. See the main text for a detailed discussion of the results.

Starting from the optimized IDM parameters, Fig. 3.2 shows the resulting error measures of

the FCD sets 1 and 3 for a systematic variation of a single model parameter while keeping

the other parameters constant. All error curves are smooth and significant parameters

show only one global minimum. The solutions belonging to different objective functions

are altogether in the same parameter range. This robustness of the IDM parameter space is

an result of the calibration study. Furthermore, Fig. 3.3 shows contour plots of Fmix[s
sim]

for the FCD set 3 for a simultaneous variation of two IDM parameters, reflecting the

correlation between the model parameters. Similar to the results shown in Fig. 3.2, the

shapes of the contour plots indicate that the IDM parameter space is smooth and exhibits

only one global minimum for the multi-dimensional parameter space corresponding to a

unique solution for the nonlinear optimization problem. Furthermore, the orthogonality

of the contour lines indicate that the IDM parameters are not collinear.

Let us discuss our results for each IDM parameter in more detail. The IDM parameter

for the desired velocity is estimated to be v0 = 57.6 km/h for the FCD set 3. This value

corresponds to the maximum velocity reached in the recorded driving situations. The other

FCD sets result in v0 ≈ 250 km/h which is the maximum value allowed (as constraint) in

the optimization algorithm. This unreasonably high value results from the fact that the

FCD sets describe bound traffic without acceleration periods to the desired speed apart

from data set 3, where the turning of a vehicle allowed for a free acceleration period (see

Fig. 3.1 on page 31). There, the short free acceleration period leads to a distinct minimum

in the corresponding error measure curve in Fig. 3.2. The error curves for the other data

sets are flat up to 50−60 km/h (Fig. 3.2), i.e., fully compatible with realistic values of the

desired velocity.

The safety time gap T is the most important parameter as it adjusts the distance to the

leading vehicle. The calibrated values within the range 1.0 ≤ T ≤ 1.5 s are exactly in

the expected range. In addition, T is very significant in the calibration process, as can
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Figure 3.2: Systematic variation of one IDM parameter while keeping the other parameters at

the optimal values listed in Table 3.1. The diagrams show the resulting error measures Frel,

Fmix and Fabs for the FCD set 1 (left) and for the FCD set 3 (right), reflecting the sensitivity of

the error measures with respect to variations of IDM parameters. Particularly, significant model

parameters like T , s0 and a show a distinct minimum. Remarkably, the solutions belonging to

different objective functions are in the same parameter range which demonstrates the robustness

of the calibration results for the IDM.
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Figure 3.3: Contour plots with equidistant contour lines showing the error measure Fmix[s
sim]

for the FCD set 3 as a result of a simultaneous variation of two IDM parameters while keeping

the others constant at the optimum values given in Table 3.1. The IDM parameters are mainly

uncorrelated as indicated by the orthogonality of the contour lines. The correlation between s0

and T is explained by the equilibrium distance s0 + vT , see Eq. (2.2).
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3.5 Calibration Results for the Intelligent Driver Model

be seen from the diagrams in Fig. 3.2, which show distinct minima around T ≈ 1.2 s and

strong variations of the error measures when varying this parameter value. In addition,

the gradients in the diagrams of Fig. 3.3 towards the optimum solutions indicate a similar

characteristics. The parameter T is not correlated with the other IDM parameters except

for the minimum distance s0 which can partially compensate for T . This correlation is

explained by the equilibrium gap that is given by s0 + vT (see Eq. (2.2)).

The considered FCD sets all contain standstills due to traffic lights. Therefore, the mini-

mum distance s0 can easily be determined with this data. The results for s0 are between

1.3 m and 3.5 m, i.e. are exactly in the expected range for a minimum bumper-to-bumper

distance when traffic comes to a standstill. Note that the relative error measure of s0 for

the FCD set 3 in Fig. 3.2 is more sensitive than the absolute error measure, as theoretically

discussed in Sec. 3.3. As intended by its definition, the measure Fmix is a compromise

between the relative and the absolute objective function.

The IDM parameter for the maximum acceleration a is significant for the reproduction

of the considered FCD sets. As shown in Fig. 3.2, too low and too high acceleration

values increase the calibration error. The calibration results of 1 ≤ a ≤ 1.6 m/s2 are

in the realistic range (see Chap. 2). The desired deceleration parameter b can not be

reliably calibrated with the considered data sets because the data do not contain any

situation where the following vehicle approaches the leader (from a large distance) with a

noticeable velocity difference. The resulting values for b show the largest variation of all

IDM parameters, as the error measures vary weakly (see the related diagrams in Figs. 3.2

and 3.3). For the FCD set 1, there is no minimum at all.

Finally, we discuss the effect of a non-constant driving style of human drivers which is

also referred to as ‘intra-driver variability’ [91]. In the FCD set 3, the driver stops three

times because of red traffic lights. The bumper-to-bumper distance is sstop,1 = 1.39 m

in the first time interval of ∆t1 = 13.9 s duration, sstop,2 = 1.42 m for the second time

interval of ∆t2 = 17.7 s duration and sstop,3 = 1.64 m for the third time interval of ∆t3 =

11.8 s duration. These data show that a deterministic car-following model only allows

for an ‘effective’ (averaged) description of the human driving behavior. This results in

parameter values that capture the ‘mean’ observed driving performance. Furthermore, we

can calculate a theoretical lower bound for the relative error from these data. Considering

the theoretical ‘best case’ of a perfect agreement between data and simulation for all times

except for the three standstills, the relative error function depends only on s0 and is given

by

ξ(s0) =
3∑

i=1

αi

(
s0 − sstop,i

sstop,i

)2

, (3.10)

where αi = ∆ti/∆T is the weight for the ith stand-still relative to the total time interval

∆T = 300 s of the FCD set 3. A necessary condition for the optimal minimum distance
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3 Model Calibration and Validation

sopt
0 minimizing the error ξ is given by

∂ξ

∂s0
=

3∑

i=1

2αi(s0 − sstop,i)

(sstop,i)2
!
=0. (3.11)

This equation can be easily solved analytically, resulting in

sopt
0 ≈ 1.458 m. (3.12)

This optimal solution defines a theoretical lower bound (based on about 15% of the data

of the considered time series) for the relative error measure of

ξmin(s
opt
0 ) ≈ 7.9%. (3.13)

This result indicates that the total calibration error of Frel = 18.0 % listed in Table 3.1

may be mainly attributed to the intra-driver variability [91], considering the fact that not

only s0 will slightly vary in time, but also other parameter values.

3.6 Model Validation

In the previous section, we calibrated the IDM model parameters by minimizing the de-

viation between the observed distance sdata(t) and the corresponding time series sdata(t)

obtained from simulations with the IDM. In this section, we validate the obtained cali-

brated IDM parameter settings by applying these settings to the other FCD sets. More-

over, we discuss the resulting driving dynamics in order to prove that the model satisfies

the requirements for its further applications.

Let us first validate the IDM in a quantitative way by simply simulating a FCD set using

the parameters calibrated on the basis of another data set. We use the three optimal

parameter settings listed in Table 3.1 and restrict ourselves to the ‘mixed error’ measure,

see Eq. (3.9). Moreover, we calculate the arithmetic average of the parameter values. The

mean parameter settings are listed in the caption of Table 3.2. Finally, we validate the

typical IDM parameter settings proposed in Chap. 2, Table 2.1.

The obtained errors Fmix[s
sim] for the considered five parameter settings and the three

FC data sets are listed in Table 3.2. The underlined errors refer to the parameter values

corresponding to the best calibration results. This cross-comparison allows to evaluate the

inter-driver variability, i.e., how much the resulting traffic dynamics varies when applying

different parameter settings to the same FCD set.

Comparing the error for the averaged parameter set or for the standard parameter set

(listed in Table 2.1 on page 17) with the errors for the parameters optimized for specific
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Parameter
set 1

Parameter
set 2

Parameter
set 3

Mean
parameters

‘Default’
parameters

FCD set 1 20.8% 28.7% 28.6% 21.8% 23.9%

FCD set 2 35.4% 26.2% 40.6% 31.0% 28.6%

FCD set 3 41.2% 26.9% 13.0% 29.6% 25.5%

Table 3.2: Resulting calibration and validation results for the error measure Fmix[s
sim] and the

three considered FCD sets when using the calibrated parameter sets 1−3 (see Table 3.1). The mean

parameter settings are v0 = 57.0m/s, T = 1.29 s, s0 = 2.22m, a = 1.25m/s2 and b = 1.57m/s2.

The ‘default’ IDM parameters are listed in Table 2.1 on page 17. The underlined errors correspond

to the best calibration results.

driving situations and drivers, one can say that the IDM performs well and behaves very

robust. The obtained errors for the ‘mean’ and the ‘default’ parameters are in the range

between 22% and 31%, i.e., of the same order as for the calibrated parameter sets. These

results are consistent with typical error ranges obtained in previous studies [95, 12, 97].

Let us finally compare the dynamics of the net distance s(t) and the velocity v(t) resulting

from the calibrated IDM parameters with the empirical data of human drivers. These are

shown in Fig. 3.4 for the FCD sets 1 and 2 and in Fig. 3.5 for the FCD set 3. The depicted

simulations have been carried out with the optimal parameters regarding the mixed error

measure Fmix. The differences in the resulting traffic dynamics for the different error

measures considered are negligible.

The frequent acceleration and deceleration periods contained in the FCD set 1 are re-

produced by the IDM, although the differences in the distance reveal that the model

sometimes over- and underestimates the headway of the human driver, cf. the diagrams

in the left column of Fig. 3.4. The calibrated safety time gap parameter T = 1.12 s listed

in Table 3.1 minimizes the overall error and approximates the ‘average’ driving dynamics

of the human driver. The increasing deviation in the standstill around t ≈ 100 s can be

explained by a drift in the empirical data that we did not correct for.

The calibration of the FCD set 2 is associated with the largest error Fmix = 26.2%. The

strong deviation of up to 8 meters between the calibrated IDM and the observed driving

behavior of FCD set 2 at time t ≈ 115 s (see diagrams in the right column of Fig. 3.4)

indicates that the car-following model cannot explain why the human driver lets the gap

to the leading vehicle increase. As a consequence of the optimization process, the time gap

parameter of T = 1.44 s is somewhat too high so that the IDM keeps a larger distance to

the leader than the human driver, e.g., in the situation around t ≈ 20 s and for t ≈ 380 s.

Figure 3.5 shows that the IDM describes the human driver in the FCD set 3 very accurately.
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3 Model Calibration and Validation

For a direct comparison, the diagrams in the right column of the figure show the obtained

time series for the ‘default’ IDM parameter settings. Notice that the object change in the

data at t ≈ 144 s is considered in the calibration simulation by resetting s to the distance

of the new leader. The largest deviation from the data is observed around t ≈ 55 s. The

gap to the leader increases as a result of a strong acceleration of the leader. This behavior

is not reproduced by the IDM. Instead, the car-following model immediately reacts to the

behavior of the leading car with a similar acceleration to keep the adjusted safety time

gap. In the next instant, the leader has to brake which explains the observed behavior

of the follower. This kind of driver anticipation is obviously not considered by the simple

car-following approach. For a more elaborated modeling approach, we refer to Chap. 4.
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Figure 3.4: Resulting traffic dynamics of the calibrated IDM with the leading vehicle from the

FCD sets 1 (left column) and 2 (right column). The simulation results are compared with the

follower from the empirical data. The IDM parameters used in the simulations are taken from

Table 3.1 for the error measure Fmix.
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Figure 3.5: Simulation results of the IDM for the FCD set 3. Left: Calibrated parameters for

Fmix given in Table 3.1. Right: ‘Default’ parameters of Table 2.1. See the main text for a detailed

discussion.
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3.7 Summary and Discussion

In this chapter, we have studied the car-following behavior of individual drivers in real

city traffic on the basis of three floating car (FC) data sets recorded by a vehicle equipped

with an ACC sensor. By means of a nonlinear optimization procedure based on a genetic

algorithm, we have calibrated the IDM parameters by minimizing the deviations between

the observed driving dynamics and the simulated trajectory when following the same

leading vehicle. As the data sets mainly describe car-following situations in obstructed

traffic and standstills, the IDM parameters T , s0 and a are particularly significant and

show distinct minima for the three proposed error measures, while the values of v0 and

b were hard to determine exactly by the FC data sets used. We have considered several

criteria for the analysis of the IDM. Apart the fit error, we have investigated the variance,

the significance of and the correlation between parameters as well. We have obtained the

following main results:

• All calibrated IDM parameters show reasonable values within the expected range.

For example, the time gap T is in the range between 1 s and 1.4 s corresponding to

maximum free flows between 1800 and 2500 vehicles/h (cf. Sec. 2.3). The maximum

acceleration a varies between 1.0 and 1.6 m/s2, cf. the investigation in Sec. 4.2.3.

These calibration results are obtained for city traffic, but the settings can be applied

to freeway traffic as well. Of course, the desired velocity v0 has to be adapted

accordingly.

• All IDM parameters are nearly uncorrelated (cf. Fig. 3.3) and the error measures are

smooth functions of the model parameters. Only T and s0 can partially compensate

for each other due to their contribution to the desired distance, s0 +vT , cf. Eq. (2.2)

on page 15. The calibrated parameter settings are robust and consistent regarding

the objective functions applied.

• The typical calibration errors are of the order of 10 − 30% which is consistent with

the findings in Ref. [95]. Human drivers do not drive constantly over time, i.e., their

behavioral driving parameters change. As shown in-depth for the minimal distance

s0, this intra-driver variability accounts for a large part of the deviations between

simulations and empirical observations.

• Another contribution to the overall error is given by driver anticipation which is not

incorporated in car-following models (cf. Sec. 1.2). More complex microscopic traffic

models take more than the immediate predecessor into account, or they incorporate

non-stationary parameters because of driver adaptation processes [125, 121]. In the

following Chap. 4, we will therefore consider these aspects for a more sophisticated
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modeling approach. Note, however, that multi-leader anticipation requires trajectory

data because the FC data is limited to the immediate predecessor.

• We validated the IDM by applying (‘cross-comparing’) the calibrated parameter

settings to other FC data sets. The resulting IDM traffic dynamics turned out to

be robust with respect to reasonable changes of parameter settings. In addition,

the typical IDM settings for freeway traffic proposed in Table 2.1 on page 17 are

consistent with the averaged settings obtained from our calibration to city traffic.

The differences in the resulting traffic dynamics for different parameter settings can

be attributed to the inter-driver variability [91]. Note that microscopic traffic models

can easily cope with this kind of heterogeneity because different parameter values

can be attributed to each individual driver-vehicle unit.

The understanding of the human driver behavior is important both for the improvement of

microscopic traffic models and for the deployment of advanced driver assistance systems.

The fact that the IDM is able to effectively reproduce the human driving behavior on

a microscopic scale is particularly interesting because a real-world implementation of an

ACC system based on the IDM has recently been presented by Volkswagen [66, 65]. Let

us finally remark that the observed human driver behavior is not necessarily ‘optimal’

regarding an efficient and comfortable driving style. The most accurate reproduction of the

human driving style should therefore not serve as the only (anyway relevant) criterion when

designing automated driving assistance systems. In Part II, we will propose and evaluate

an extension of ACC systems aimed at an actively jam-avoiding driving strategy. To this

end, we will consider an automated adaptation of the driving characteristics according to

the actual traffic situation.
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4 The Human Driver Model

The nature of human driving behavior as compared to the ‘automatic’ response assumed

by most microscopic traffic models is a controversial topic in traffic science [32, 8, 45,

84, 57, 15, 82]. Finite reaction times and limited estimation capabilities impair human

driving performance and traffic stability as compared to automated driving, sometimes

called ‘adaptive cruise control’ (ACC), cf. Sec. 1.1. However, unlike machines, human

drivers routinely scan the traffic situation several vehicles ahead and anticipate future

traffic situations leading. This can compensate for some weaknesses of human drivers and

increase traffic stability (again).

The question arises, how these aspects affect the overall driving behavior and performance,

and whether the stabilizing effects (such as anticipation) dominate over the destabilizing

effects (like reaction times and estimation errors) or not, or whether they effectively cancel

out each other. The answers to these questions are crucial for determining the influence

of a growing number of vehicles equipped with ACC systems on the overall traffic flow

which is the topic of Part II.

Single aspects of human driving behavior have been investigated in the past. An essential

feature of human driving is a considerable reaction time which is a consequence of the

physiological aspects of sensing, perceiving, deciding, and performing an action [106]. Th

resulting reaction time (to unexpected situations) is of the order of 1 s and varies strongly

between different drivers (age, gender), different stimuli, and different studies [28]. Clearly,

reaction times contribute to traffic instabilities and, consequently, are an essential element

in many traffic models [79]. In the most straightforward way, they are introduced as time

delays into time-continuous car-following models which results in a coupled set of delay-

differential equations. This approach has been pursued, e.g., for the Optimal Velocity

Model (OVM) [3, 2], and for the Intelligent Driver Model (IDM) [123, 124]. However, the

OVM with delay turns out to be accident-free only for unrealistically small reaction times

[20]. To overcome this deficiency, Davis [21] has introduced (among other modifications)

an anticipation of the expected future gap to the front vehicle, allowing accident-free

driving at reaction times of 1 s. However, reaction times were not fully implemented in

Ref. [21] since the own velocity which is one of the stimuli on the right-hand side of the

acceleration equation, has been evaluated at the actual rather than at the delayed time.

Another approach to model temporal anticipation consists in including the acceleration

of the preceding vehicles in the input variables of the model. More commonly, however,
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Figure 4.1: Empirical distribution of time gaps obtained from single-vehicle data from the left

lane of the Dutch freeway A9 at a detector cross section 1.0 km upstream of an on-ramp. The

free traffic data has been filtered with respect to average flows > 1000 vehicles/h/lane. Moreover,

we distinguish between average velocities V > 72 km/h (free traffic), and V < 54 km/h (congested

traffic). In congested traffic, the time gap distribution is shifted to higher values.

microscopic traffic models have been formulated in terms of iterated coupled maps such as

the Gipps model [26] or the Newell model [87] or in terms of a cellular automaton such as

the Nagel-Schreckenberg model [83]. In these two model classes, the update time step is

considered as an explicit model parameter rather than an auxiliary parameter needed for

numerical integration, and it is often interpreted as ‘reaction time’.

To my knowledge, there exists no car-following model exhibiting platoon stability for

reaction times (with respect to all stimuli) exceeding half of the time gap of the vehicles

in the platoon. Human drivers, however, accomplish this task easily: In dense (not yet

congested) traffic, the most probable time gaps on German or Dutch freeways are 0.9−1 s

[63, 113] which is of the same order as the typical reaction time [28]. Moreover, single-

vehicle data indicate that some drivers drive at gaps as low as 0.3 s which is below the

reaction time of even a very attentive driver by a factor of 2 or more. Figure 4.1 shows

data from a Dutch freeway, which have been filtered with respect to average velocities

(and flows). Safe driving would not be possible at such time gaps and reaction times,

when only the immediate vehicle in front was considered.

This suggests that human drivers achieve additional stability and safety by taking into ac-

count next-nearest neighbors and further vehicles ahead as well. Such ‘spatial anticipation’

or ‘multi-anticipation’ has been applied to the OVM [69] and to the Gipps model [24] as

well as to some cellular automata model [62, 68]. As expected, the resulting models show

a higher stability than the original model. However, the stability of the aforementioned

models is still smaller than that of human driving. Furthermore, they display unrealistic

behavior such as clustering in pairs [24] or too large propagation velocities of perturbations

in congested traffic (i.e., Vg ≫ −15 km/h) [69].
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Imperfect estimation capabilities often serve as motivation or justification to introduce

stochastic terms into microscopic traffic models such as the Gipps model [26]. Most

cellular automata require fluctuating terms as well. In nearly all these cases, fluctuations

are assumed to be δ-correlated in time and acting directly on the accelerations. An

important feature of human estimation errors, however, is a certain persistency. If one

underestimates, say, the distance at time t, the probability of underestimating it at some

time later is high as well. Another source leading to temporally correlated acceleration

noise lies in the tendency of human drivers to actively adapt to the traffic situation, i.e.,

to change the acceleration only at discrete times which is sometimes taken into account

by the ‘action point’ concept [130].

In this chapter, we propose the Human Driver Model (HDM) in terms of four extensions

to classical follow-the-leader models by incorporating into them (i) finite reaction times,

(ii) estimation errors, (iii) spatial anticipation, and (iv) temporal anticipation. We formu-

late the HDM as a ‘meta-model’ that can be combined with a wide class of microscopic

traffic models. The class of compatible models is characterized by continuous acceleration

functions depending on the velocity, the gap, and the relative velocity with respect to

the leading car and includes, for example, the OVM [3], the Gipps model [26], the ve-

locity difference model [40, 50], the IDM [123], and the boundedly rational driver model

[73, 74]. For matters of illustration, we will apply the Human Driver Model to the IDM

(cf. Chap. 2).

The chapter is structured as follows: In Sec. 4.1, HDM in terms of the acceleration function

of the underlying traffic model will be formulated. In Sec. 4.2, the asymptotic stability

of vehicle platoons will be simulated as a function of the reaction time T ′ for different

degrees of anticipation. There, we will investigate two causes of traffic instability: The

time lag caused by finite accelerations (cf. also Sec. 2.4), and the delay caused by the finite

reaction times of drivers. Furthermore, in Sec. 4.3, the macroscopic traffic dynamics for

an open system containing a flow-conserving bottleneck will be simulated. A summary of

the findings and a discussion will conclude the chapter (Sec. 4.4).

4.1 Modeling Human Driving Behavior

Let us now formulate the Human Driver Model (HDM) as a meta-model applicable to

time-continuous microscopic traffic models (car-following models) of the general form

dvα

dt
= v̇mic (sα, vα, ∆vα) , (4.1)

where the own velocity vα, the net distance sα, and the approaching rate ∆vα := vα−vα−1

to the leading vehicle serve as stimuli determining the acceleration v̇mic (cf. Secs. 1.2 and
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2.1). This class of basic models is characterized by (i) instantaneous reaction, (ii) reaction

to the immediate predecessor only, and (iii) infinitely exact estimating capabilities of

drivers regarding the input stimuli s, v, and ∆v which also means that there are no

fluctuations. In Sec. 8.1, we will discuss that, in some sense, such models describe driving

behavior similar to adaptive cruise control systems. For the sake of simplicity, we will

restrict ourselves here to single-lane longitudinal dynamics, while lane-changing models

are discussed in Chap. 5.

4.1.1 Finite Reaction Time

A reaction time T ′ is incorporated in a time-continuous model of the type given by Eq. (4.1)

simply by evaluating the right-hand side of Eq. (4.1) at a previous time t − T ′. The

numerical integration (cf. Chap. 6) now depends on both, the reaction time and the

update time. In this way, one obtains a coupled set of delay-differential equations. If the

reaction time is a multiple n of the update time interval, i.e., T ′ = n∆t, it is straightforward

to generalize Eq. (4.1) by calculating all terms on the right-hand sides with the velocities

and positions n time steps in the past. If T ′ is not a multiple of the update time interval,

we propose a linear interpolation according to

x(t − T ′) = βxt−n−1 + (1 − β)xt−n, (4.2)

where x denotes any quantity on the right-hand side of (4.1) such as sα, vα or ∆vα. xt−n

denotes this quantity n time steps before the actual step. Here, n is the integer part of

T ′/∆t, and the weight factor of the linear interpolation is given by β = T ′/∆t − n. We

emphasize that all input stimuli sα, vα, and ∆vα are evaluated at the delayed time.

Note that the reaction time T ′ is sometimes set equal to the ‘safe time gap’ T . It is,

however, essential to distinguish between these times conceptually. While the time gap

T is a characteristic parameter of the driving style, the reaction time T ′ is essentially a

physiological parameter and, consequently, weakly or not correlated with T . We point

out that both, the time gap T and the reaction time T ′ are to be distinguished from the

numerical update time step ∆t which is sometimes interpreted as a reaction time as well.

For example, in our simulations, an update time step of 2 s has about the same effect as

a reaction time of 1 s, while the results are essentially identical for any update time step

below 0.1 s. In Sec. 4.2.4, we investigate the interplay between reaction time and numerical

update time step. The latter can be basically interpreted as a typical length of time periods

during which drivers do not focus their attention on the driving task (‘restricted attention

span’).
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4.1 Modeling Human Driving Behavior

4.1.2 Imperfect Estimation Capabilities

We will now model estimation errors for the net distance s and the velocity difference ∆v

to the preceding vehicle. Since the velocity itself can be obtained by looking at the speed

indicator, we neglect its estimation error. From empirical investigations (for an overview

see Ref. [8]) it is known that the uncertainty of the estimation of ∆v is proportional to

the distance, i.e., one can estimate the time-to-collision (TTC) s/|∆v| with a constant

uncertainty.1 For the distance itself, we specify the estimation error in a relative way

by assuming a constant variation coefficient Vs of the errors. Furthermore, we take into

account a finite persistence of estimation errors by modeling them as a Wiener process

[25]. This leads to the following nonlinear stochastic processes for the distance and the

velocity difference,

sest(t) = s(t) exp(Vsws(t)), (4.3)

(∆v)est(t) = ∆v(t) + s(t) rcw∆v(t), (4.4)

where exp(·) denotes the exponential function, Vs = σs/〈s〉 with σ2
s = 〈(s − 〈s〉)2〉 is

the variation coefficient of the distance estimate, and 1/rc is a measure of the average

estimation error of the time-to-collision. The stochastic variables ws(t) and w∆v(t) obey

independent Wiener processes w(t) of variance 1 [25] with correlation times τ defined by

dw

dt
= −w

τ
+

√

2

τ
ξ(t) (4.5)

with

〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′). (4.6)

In the explicit numerical update from time step t to step t+∆t, we have implemented the

Wiener processes by the approximation [25]

wt+∆t = e−∆t/τwt +

√

2∆t

τ
ηt, (4.7)

where the {ηt} are independent realizations of a uniformly distributed quantity with zero

mean and unit variance. By numerical validation we checked that the update scheme

(4.7) satisfies the fluctuation-dissipation theorem 〈w2
t 〉 = 1 and 〈wtwt′〉 = e−|t−t′|/τ for any

update time interval satisfying ∆t ≪ τ .

The stochastic sources Vs and rc characterize the degree of the estimation uncertainty

of the drivers, while τ denotes the correlation time of errors. The limit τ → 0 s corre-

sponds to multiplicative white acceleration noise, while τ → ∞ corresponds to ‘frozen’

1Generally, the estimation error includes a systematic bias as well. We have found, however, that our
model is very robust with respect to reasonable biases in the distance and velocity-difference estimates.
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error amplitudes, i.e., to de facto heterogeneous traffic. Simulations have shown that, in

agreement with our expectations, traffic becomes more unstable with increasing values of

the fluctuation strengths Vs and rc. To compare the influence of the temporally correlated

multiplicative HDM noise with more conventional white acceleration noise, we have re-

peated the simulations of Sec. 4.3 with the deterministic HDM (Vs = rc = 0), augmented

by an additive noise term
√

Qaξ(t) on the right-hand side of the acceleration equation.

Remarkably, values of the fluctuation strength Qa can be found, for which the dynamics

are essentially the same as for the more realistic stochastic terms described by Vs, rc, and

τ . Thus, the more realistic representation of sources of stochasticity in the HDM can be

used to determine the appropriate strength Qa of the simplified white noise representation.

It is interesting to compare the stochastic HDM expressions for imperfect estimation capa-

bilities with other stochastic microscopic traffic flow models. While fluctuating terms were

first introduced to traffic models more than 20 years ago [26], the most prominent example

of stochastic traffic models are cellular automata (CA) of the Nagel-Schreckenberg type

[83] and extensions thereof. There is, however, a qualitative difference compared to most

continuous models: Fluctuation terms change the dynamics of many CA models qualita-

tively. Therefore, they must be carefully chosen to yield plausible results. In contrast, the

qualitative dynamics of car-following models typically remain the same when fluctuations

are added via the proposed HDM approach.

4.1.3 Temporal Anticipation

We assume that drivers are aware of their finite reaction time and anticipate the traffic

situation accordingly. Besides anticipating the future distance [21], we will anticipate the

future velocity using a constant-acceleration heuristic. The combined effects of a finite

reaction time, estimation errors and temporal anticipation lead to the following input

variables for the underlying microscopic model (4.1):

dv

dt
= v̇mic(s′α, v′α, ∆v′α) (4.8)

with

s′α(t) =
[
sest
α − T ′∆vest

α

]

t−T ′
, (4.9)

v′α(t) =
[
vest
α + T ′aα

]

t−T ′
, (4.10)

and

∆v′α(t) = ∆vest
α (t − T ′). (4.11)

We did not apply the constant-acceleration heuristic for the anticipation of the future

velocity difference or the future distance, as the accelerations of other vehicles cannot be
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4.1 Modeling Human Driving Behavior

estimated reliably by human drivers. Instead, we have applied the simpler constant-velocity

heuristic for these variables.

Notice that the anticipation terms discussed in this subsection (which do not contain any

additional model parameters) are specifically designed to compensate for the reaction time

by means of plausible heuristic. The impact of these anticipation terms will be studied

in Sec. 4.2. They are to be distinguished from ‘anticipation’ terms in some models aimed

at collision-free driving in ‘worst-case’ scenarios (sudden braking of the preceding vehicle

to a standstill), when the braking deceleration is limited. Such terms typically depend on

the velocity difference and are included, e.g., in the Gipps model, in the IDM, and in some

cellular automata [68, 64], but notably not in the OVM. The HDM is most effective when

using a basic model with a reasonable dependence on relative velocities.

4.1.4 Spatial Anticipation Several Vehicles Ahead

Let us now split up the acceleration of the underlying microscopic model into a single-

vehicle acceleration on a nearly empty road depending on the considered vehicle α only,

and a braking deceleration taking into account the vehicle-vehicle interaction with the

preceding vehicle:2

v̇mic(sα, vα, ∆vα) := v̇free(vα) + v̇int(sα, vα, ∆vα). (4.12)

Next, we model the reaction to several vehicles ahead just by summing up the correspond-

ing vehicle-vehicle pair interactions v̇int
αβ between vehicle β and vehicle α for the na nearest

preceding vehicles β:3

d

dt
vα(t) = v̇free

α +
α−1∑

β=α−na

v̇int
αβ. (4.13)

All distances, velocities and velocity differences on the right-hand side are specified ac-

cording to Eqs. (4.9) to (4.11). Each pair interaction between vehicle α and vehicle β is

specified by

v̇int
αβ = v̇int (sαβ , vα, vα − vβ) , (4.14)

2This decomposition of the acceleration will also be used in Chap. 5 to formulate a lane-changing model
for a wide class of microscopic traffic models.

3The underlying modeling concept for this decomposition is a social force approach[81, 37]. Basically, there
are two types of forces: A driving force to accelerate to the desired velocity, and repulsive interaction

forces that are effective if one gets too close to the leader. When considering several leaders, it obviously
makes no sense to change the driving force to reach the desired velocity since, by definition, this part of
the acceleration is independent of any other vehicles. In contrast, it is intuitive to add further repulsive
interaction forces if there are several leaders. Notice that the interaction force must decay sufficiently
fast with the distance in order that the sum of the forces always stays finite.
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where

sαβ =
α∑

j=β+1

sj (4.15)

is the sum of all net headways between the vehicles α and β because the (net) gaps

determine the criticality of a situation.

4.1.5 Applying the HDM Extensions to the Intelligent Driver Model

In the following, we will apply the HDM extensions to the IDM, whose continuous accel-

eration function is given by Eq. (2.1) on page 15. Remarkably, there exists a closed-form

solution of the multi-anticipative IDM equilibrium distance as a function of the velocity,

se(v) =
γs∗(v, 0)

√

1 −
(

v
v0

)δ
, (4.16)

which is γ times the equilibrium distance of the IDM, where

γ(na) =

√
√
√
√

na∑

α=1

1

α2
. (4.17)

The equilibrium distance se(v) can be transformed to that of the original IDM by renor-

malizing the relevant IDM parameters appearing in s∗(v, 0):

sren
0 =

s0

γ
, T ren =

T

γ
. (4.18)

The above renormalisation will be applied to all simulations in this thesis. In the limiting

case na → ∞ (i.e., anticipation to arbitrarily many vehicles), we obtain lim
na→∞

γ(na) =

π/
√

6 = 1.283. This means that the combined effects of all non-nearest-neighbor interac-

tions would lead to an increase in the equilibrium distance of just about 28%. According

to Eq. (4.17), the largest impact results from the direct leader, while the second predeces-

sor weights 11.8% relative to the first leader, the third predecessor 4.9%, etc. However, in

case of a large velocity difference, non-nearest neighbors can contribute to Eq. (4.13) to a

larger extend. Therefore, multi-anticipation is able to increase the stability, see Sec. 4.2

below.

4.1.6 Summary and Further Driver Adaptation Processes

From a control-theoretical point of view, the HDM extensions implement a continuous

response to delayed (and noisy) input stimuli. The different stabilizing and destabilizing
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Figure 4.2: Elements of the feedback loop for the vehicle dynamics according to the Human Driver

Model. The quantities to be controlled are the distance sα and velocity vα. The control is performed

by the acceleration function of the model representing a nonlinear gain function. The feedback

path from the acceleration to the quantities to be controlled contains three characteristic times.

Besides integral elements incorporating the velocity adaptation time τv, the feedback contains

delay elements representing the update time ∆t and the reaction time T ′ needed to ‘calculate’

the acceleration function (cf. Sec. 4.2 for a detailed analysis). To include temporal anticipation,

additional (nonlinear) derivative elements are incorporated into the control path. The whole circuit

is perturbed by the leading vehicles represented by the external (and noisy) inputs xβ , and vβ .

factors of the driver’s behavior and the vehicle dynamics constitute a nonlinear feedback

control system as visualized in Fig. 4.2 (cf. the IDM control loop illustrated in Fig. 2.9 on

page 28). More specifically, the controllers are the drivers, the quantities to be controlled

are the velocity of the own vehicle and the distance to the leading vehicle, and the input

stimuli are the observed distances and velocities, respectively.4 Notice that the reaction

time is represented by dead-time or delay elements. The actions in order to reach desired

values of the velocity and distance consist in accelerating or braking according to a car-

following model. In the framework of control theory, this acceleration is represented

by a nonlinear gain function. Since only the acceleration can be controlled, the control

path contains additional integral elements. To include anticipation, additional (nonlinear)

derivative elements are required in the control path. The control path as illustrated in

Fig. 4.2 contains several time delays which we will investigate in detail in the following

Sec. 4.2.

Finally, it should be mentioned that the proposed HDM assumes a longitudinal human

‘driving style’ characterized by the reaction to the immediate traffic environment with in

a time-independent way referring to constant parameter settings (which, of course, can be

varied for each driver-vehicle unit in a microscopic traffic simulation). On a longer time

scale, however, human drivers also adapt their driving style to the traffic situation, i.e., the

4Instead of the velocity difference, one can take the velocity vα−1 of the leading vehicle as equivalent
input.
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actual driving style depends on the traffic conditions during the last few minutes [10, 121].

For example, it is observed that most drivers increase their preferred temporal headway,

after being stuck in congested traffic for some time, cf. Fig. 4.1. This is sometimes called

‘frustration effect’ [117, 33]. Accordingly, when larger gaps appear or when reaching the

downstream front of the congestion area, human drivers accelerate less compared to a

free-traffic situation.

This memory effect [121] can be modeled by assuming that, when encountering congested

traffic characterized by a low ‘level of service’ λ = vα/v0, drivers gradually adapt their

driving style from a ‘free-traffic mode’ to a ‘congested-traffic mode’. This typically involves

a gradual change of some parameters of the underlying car-following model as a function

of the new, slowly varying quantity λ(t). Specifically, for the HDM-IDM combination, the

parameters a and T valid for free traffic can be changed appropriately on a time scale of

the order of a few minutes. For further details, we refer to Ref. [121].

In the remainder of this chapter, we will neglect this effect for matters of simplicity. Nev-

ertheless, long-term adaptations of the driving style have a significant influence on the ca-

pacity and stability of traffic flow. In Part II, we will compensate for this capacity-reducing

effect by proposing an automated strategy that depends on different traffic situations.
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4.2 Collective Stability of Vehicle Platoons

4.2 Collective Stability of Vehicle Platoons

It is well known in the theory of car-following models [32] and for macroscopic traffic

models [122] that collective instabilities of traffic flow can occur even for zero reaction

times and negligible update times. This is true even if a pair of vehicles always behaves

locally stable. The reason is that, in an extended multi-particle system with many degrees

of freedom, two concepts of linear stability have to be considered: Local stability is related

to the response of a vehicle following the motion of the vehicle directly in front, i.e., to

the dynamics of a pair of vehicles. Asymptotic, string or collective stability refers to the

damping of a perturbation initially introduced by a leading vehicle along a platoon of

following vehicles [79].5 Generally, collective stability is a more restrictive criterion than

local stability. It is relevant for the breakdown of traffic flow and traffic safety.

In traffic flow, the source of the string instability is the finite velocity adaptation time

resulting from limited acceleration capabilities. As a consequence, perturbations amplify

while propagating upstream in the platoon of vehicles and eventually lead to oscillating

congested traffic (stop-and-go traffic). This is a commonly observed type of traffic con-

gestion [101]. An examples of this instability mechanism for the (deterministic) IDM is

shown in Fig. 2.8 on page 26.

In Sec. 4.2.2, we investigate the string stability of the HDM as a function of the reaction

time T ′, the temporal anticipation and the number na of anticipated vehicles by simu-

lating a platoon of vehicles following an externally controlled lead vehicle. We carefully

distinguish between reaction time, adaptation time and update time and investigate the

role of each of these times with respect to instabilities of traffic flow. First, we study

how the stability is influenced by the reaction time and a finite acceleration capability

(Sec. 4.2.3). Second, we investigate the interplay between reaction time and numerical

update time (Sec. 4.2.4). Since we apply the same perturbation of the lead vehicle to

all numerical investigations of this section, we start with a description of the simulation

scenario in Sec. 4.2.1.

4.2.1 Simulation Setup and Applied Perturbation

We have simulated a platoon of 100 vehicles following a leader with externally prescribed

velocity vlead(t). Initially, and for the first 1000 s of simulation time, the leader drives

at velocity vlead = 25 m/s. Furthermore, all followers are in equilibrium, i.e., the initial

velocities of all platoon vehicles are the same and their gaps are equal to se(vlead) [cf.

Eq. (4.16)]. That is, the initial accelerations are zero. Throughout this section, we neglect

5Note that the regime of string instability can be further subdivided into a region of convective insta-

bility, where perturbations grow, but finally are convected out of the system, and a region of absolute

instability.
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Figure 4.3: Time series of the acceleration and velocity for the externally controlled first vehicle of

the vehicle platoon. The lead vehicle decelerates at t = 1000 s with −2m/s2, inducing a perturba-

tion to the platoon of vehicles. The distance of the second car is in equilibrium before the braking

maneuver and adjusts to the new equilibrium distance after a while. This braking maneuver serves

as perturbation in all simulations of this chapter.

fluctuations which will be considered in Sec. 4.3. To trigger possible instabilities, the ex-

ternally controlled vehicle decelerates with −2 m/s2 from 25 m/s to 19 m/s during the time

interval 1000 ≤ t ≤ 1003 s, and drives at v′lead = 19 m/s afterwards until the simulation

ends at t = 2500 s. This braking maneuver serves as perturbation for all simulations of

this section. Figure 4.3 shows the time series of the acceleration and velocity of the lead

vehicle and the distance to the lead vehicle of the second car in the platoon.

As the nonlinear dynamics resulting from this finite perturbation cannot be handled by

linearization anymore, we investigate the system numerically. In all simulations, we have

used the explicit integration scheme (6.4) on page 104, assuming constant accelerations

between each update time interval ∆t. The update time interval is set to ∆t = 0.1 s, the

vehicle length is 5 m and the ‘standard’ IDM parameters given in Table 2.1 on page 17

are used unless stated otherwise. We only set the maximum acceleration to a = 1.4 m/s2.

If the number of anticipated vehicles na is larger than the number of preceding vehicles

(which can happen for the first vehicles of the platoon), then na is reduced to the max-

imum number of vehicles. As usual, we restrict the maximum braking deceleration to

9 m/s2 to consider the physical limit for the braking decelerations (cf. Chap. 2). Since

we have observed such values finally leading to accidents only in simulations of unrealis-
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tic parameter combinations, this limit has a negligible influence on the dynamics in the

following sections.

4.2.2 Influence of Reaction Time and Anticipation

Let us now investigate the string stability of the HDM as a function of the reaction time

T ′, the parameter-free temporal anticipation, and the number na of anticipated vehicles

by means of simulation. The initial conditions, the model parameters and the driving ma-

neuver of the leading vehicle which introduces the initial perturbation have been described

in the previous Sec. 4.2.1. We distinguish the following three regimes of asymptotic or

collective stability:

(i) String stability refers to the situation, where all perturbations introduced by the

deceleration of the lead vehicles are damped away while propagating through the

platoon of vehicles.

(ii) The oscillatory regime is characterized by string instability, where perturbations

increase but do not lead to collisions between vehicles, i.e., negative net distances.

(iii) The collision regime refers to a situation where, finally, the instability results in a

collision of two (or more) vehicles.

The condition for a simulation to be in the collision regime (iii) is fulfilled if there is some

time t and some vehicle α such that sα(t) < 0. The condition for string stability is fulfilled

if |v̇α(t)| < 3 m/s2 for all vehicles and at all times (including the period where the leading

vehicle decelerates). Additionally, string stability requires that, for sufficiently long times

after the braking maneuver, the accelerations of all vehicles converge to zero. Finally, if

neither the conditions for the collision regime nor those for the stable regime are fulfilled,

the simulation result is attributed to the oscillatory regime. For matters of illustration,

we refer to Fig. 4.5 below.

By means of simulation, we have determined the string stability boundaries as a function

of the reaction time T ′ and the platoon size of vehicles. Figure 4.4 shows the three stability

regimes for four scenarios with different temporal and spatial anticipation:

(1) The first scenario with neither spatial anticipation (na = 1) nor temporal anticipa-

tion serves as reference. This case corresponds to conventional IDM car-following

behavior with finite reaction time, cf. Sec. 4.1.1. A platoon of 100 vehicles is stable

for reaction times of up to T ′
c1 = 0.9 s. Test runs with larger platoon sizes (up to 1000

vehicles) did not result in different thresholds suggesting that stability for a platoon

size of 100 essentially means string stability for arbitrarily large platoon sizes. For

reaction times T ′ > T ′
c2 = 1.15 s, the collective instability leads to accidents.
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Figure 4.4: String stability regimes for a platoon of identical vehicles as a function of the platoon

size and the reaction time T ′ for the scenarios (1) - (4). The graph (a) depicts scenario (1)

assuming conventional follow-the-leader behavior (na = 1) without temporal anticipation; (b)

with temporal anticipation and na = 1 (scenario (2)); (c) reaction to na = 4 vehicles without

temporal anticipation (scenario (3)); (d) reaction to na = 4 vehicles with temporal anticipation

(scenario (4)). In the diagrams (b)-(d), the first scenario of graph (a) is plotted with thin lines for

purposes of comparison. The externally controlled first vehicle induced a perturbation according

to Fig. 4.3. In the ‘stable’ phase, all perturbations are damped away. In the oscillatory regime,

the perturbations increase, but do not lead to collisions.

(2) The second scenario extends the reference scenario by implementing temporal an-

ticipation as specified in Sec. 4.1.3. While the stability limit, T ′
c1 = 0.95 s, is only

slightly increased with respect to scenario (1), the collision limit T ′
c2 = 1.4 s is in-

creased significantly.

(3) The third simulation scenario implements spatial anticipation by looking na = 4

vehicles ahead (cf. Sec. 4.1.4). This spatial anticipation increases the stability and

shifts both boundaries, T ′
c1 and T ′

c2 to significantly higher values.

(4) The forth scenario combines temporal and spatial anticipation (na = 4) which leads

to the most stable system. Particularly, the second boundary is shifted to values

of T ′
c2 ≥ 2 s. Remarkably, the simulations show that, with suitable anticipation,
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4.2 Collective Stability of Vehicle Platoons

one could obtain collision-free traffic even for reaction times exceeding the safety

time gap of T = 1.5 s. More detailed investigations for even larger reaction times

reveal that collisions are triggered either directly by late reactions to deceleration

maneuvers or indirectly as a consequence of the string instability. Further increasing

the number of anticipated vehicles na does not change the thresholds significantly.

We have checked if these results are robust with respect to parameter changes and found

no qualitative difference for other parameter sets within a reasonable range. For example,

when changing the time gap from T = 1.5 s to T = 0.9 s, the stability thresholds T ′
c1 and

T ′
c2 reduce proportionally, i.e., T ′

c1 remains typically of the order of or slightly below T ,

while T ′
c2 > T .6 Furthermore, we have also investigated the role of statistically distributed

reaction times, assuming that every driver has a different reaction time T ′
α within a range

of ±30% around a mean value 〈T ′
α〉 = T ′ (cf. Chap. 6 for numerical details). Interestingly,

the variation of the individual reaction times leads to a remarkably small change of the

stability boundaries T ′
c1 and T ′

c2.

In summary, these findings demonstrate the important influence of anticipation for the

collective stability as modeled by the HDM. With a suitable spatial and temporal antic-

ipation, we have obtained string stability for reaction times near (and even larger than)

the safety time gap.

4.2.3 Traffic Instability due to Reaction Times and Finite Accelerations

Let us now investigate the influence of finite human reaction times T ′ and the time lag τv

caused by finite accelerations of the vehicles. Obviously, both characteristic times influence

the stability of traffic flow. Reaction times are an essential factor contributing to traffic

instabilities as shown in Sec. 4.2.2. Clearly, stability always decreases when T ′ increases

as explicitly shown in Sec. 4.2.2.7

In contrast to the reaction time, the velocity adaptation time τv (needed to accelerate to a

new velocity) is already implicitly contained in the acceleration function (2.1) of the IDM.

It results from limited acceleration capabilities modeled by the IDM parameter a. For low

values of a, the lag time of velocity adaptations to the leading vehicles leads to collective

instabilities already observed for zero reaction time (see Sec. 2.4).

In the following, we investigate the interplay between the reaction time T ′ and the adapta-

tion time τv by simulating a vehicle platoon (see Sec. 4.2.1), using a constant update time

6Note that, in Ref. [124], a similar investigation has been carried out with a weaker braking perturbation
of −0.7 m/s2. Those results are in agreement with the findings presented here.

7As even adaptive cruise control (ACC) systems display relevant time delays in the control path that
cannot be neglected [65, 78], a profound understanding of the dynamics and the instability mechanisms
caused by time delays is needed.

61
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of ∆t = 0.1 s. The value for ∆t is so low that the numerical results represent, to a good

approximation, the exact solution of the set of delay-differential equations. The velocity

adaptation time is mainly influenced by the acceleration, i.e., by the IDM and given by

τv =
v0

4a
, (4.19)

where v0 is the desired velocity and a the maximum acceleration parameter [59].

We have simulated the system for a fixed reaction time of T ′ = 0.9 s and three values for

the acceleration parameter a. The results are as follows:

(1) For a = 1.0 m/s2, the system is string stable, i.e., the initial perturbation of 2 m/s2

dissipates quickly.

(2) After lowering the acceleration parameter to a = 0.3 m/s2, the initial perturbation

decreases for the first few vehicles (the system is locally stable), but it increases

again for the subsequent vehicles, and finally leads to a traffic breakdown in the

neighborhood of vehicle 100 at a simulated time t ≈ 1250 s, i.e., the system is

string unstable as shown in Fig. 4.5(a). After the first traffic breakdown, further

stop-and-go waves develop as displayed in Fig. 4.6(a).

(3) Remarkably, after increasing the acceleration from the reference value 1.0 m/s2 to

a = 2.5 m/s2, the system becomes string unstable as well, cf. Fig. 4.5(b). Again,

further stop-and-go waves develop in the course of time further upstream.

When varying the maximum acceleration capability, we come to the remarkable result

that stability reaches its maximum for a certain range of values for a that depends on

the reaction time T ′. Traffic flow becomes more unstable if the value of the maximum

acceleration is higher or lower than this value. We have checked if these results are robust

with respect to parameter changes and found no qualitative difference for other parameter

sets within a reasonable range. For example, when changing the time gap parameter from

T = 1.5 s to T = 0.9 s, the stability thresholds reduce proportionally.

In any case, the results are markedly different from the case of zero reaction time where

higher values of a (lower values of τv) always increase stability. This can be understood

by recognizing that the ‘classical’ collective instability mechanism of the IDM (effective

for high values of τv and only weakly depending on T ′) is qualitatively different from the

second instability mechanism (active for low values of τv and high values of the reaction

time). In the first case, the traffic breakdown is initially triggered by a long-wavelength

string instability as can be seen from Fig. 4.5(a) in the plots for cars no. 10 and 20.

Secondary instabilities of shorter wavelengths appear only in the nonlinear regime (car

50), before a complete breakdown is observed (car 80).
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(b) String unstable with settings T’=0.9 s, a=2.5 m/s2
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Figure 4.5: Time series of the acceleration with a reaction time of T ′ = 0.9 s. The maximum

acceleration is reduced to a = 0.3m/s2 (left column) or increased to a = 2.5m/s2 (right column)

showing unstable traffic (while a = 1.0m/s2 leads to stable traffic). (Left) The initial perturbation

caused by the braking maneuver of the first vehicle is initially reduced (car 10), but then it

increases while propagating upstream. This results in a stop-and-go wave for the car 100. (Right)

The perturbation grows as well. The different instability mechanisms are discussed in the main

text. In both scenarios, more stop-and-go waves are triggered as shown in Fig. 4.6.
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Figure 4.6: Patterns of emerging stop-and-go waves. The simulation is identical to that of Fig. 4.5,

but vehicles further upstream are shown on a different time scale. The period of the stop-and-go

waves is about 120 s for the simulation shown (on the left), while in the scenario on the right, the

period is about 30 s.

In contrast, the second instability mechanism is initially triggered by a short-wavelength

local instability as can be seen from Fig. 4.5(b) for the vehicles no. 1, 4 and 10. Fur-

ther stop-and-go waves are triggered by the same mechanism later on. The range of the

parameters T ′ and τv for the second mechanism is plausible when recognizing that the

initial local instability is of the same type as that of simple feedback loops with delay-time

elements, i.e., the velocity adaptation time in our context. Such systems become unstable

if the ratio T ′/τv exceeds a certain value of the order of unity that depends on the specific

system. In contrast, the classical long-wavelength instability triggered by long velocity

update times does not require a finite reaction time.

We have investigated this observation more systematically by calculating the instability of

the system as a function of the reaction time and the acceleration parameter. To obtain a

continuous measure for the instability, we have calculated the variance of the accelerations

for the 20 floating cars 5, 10, 15, . . . , 100 based on the time series for t > 1000 s, i.e., after

the perturbation. The diagrams (a) and (c) of Fig. 4.7 show this instability measure as a

function of T ′ for several fixed values of a. We get the following results:

• For a ≥ 1 m/s2, the system is stable for sufficiently small reaction time, and the in-
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Figure 4.7: System instability measured by the variance of vehicle acceleration (see the main text

for details) as a function of the reaction time T ′ (diagram a,c) and the maximum acceleration

parameter a (b,d) for some fixed values of a and T ′, respectively. In (a) and (b), temporal antici-

pation has been switched off, while it has been turned on in (c) and (d). No spatial anticipation

has been assumed. Notice that each point represents one simulation run.

stability threshold T ′
c(a) decreases with a. This is a signature of the short-wavelength

instability mechanism.

• For a = 0.5 m/s2, the system becomes unstable regardless of the value of T ′, and the

instability measure has only a weak dependence on T ′. This is a signature of the

long-wavelength mechanism. Temporal anticipation slightly stabilizes the platoon

dynamics.

Obviously, for a given reaction time T ′, there is a certain ‘optimal’ value for a or a range

of values, where the system has maximum stability. This is depicted in Fig. 4.7(b) and

(d) where the stability is plotted as a function of a for several fixed values of T ′:

• For T ′ ≤ 0.9 s, the two mechanisms of instability are separated by an ‘optimal’

range of the parameter a where the system is completely stable. While, in the long-

wavelength instability range a . 0.6 m/s2, the instability measure depends only

weakly on T ′, the critical acceleration ac at the threshold of the short-wavelength
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Figure 4.8: Phase diagram of stable and unstable traffic flow spanned by the reaction time T ′

and the acceleration parameter a. The initial perturbation leads to a long-wavelength collective

instability for small values of a. For higher settings of a, the finite reaction time causes short-

wavelength local instabilities. For a broad range of combinations of (T ′, a), the traffic dynamics

of the vehicle platoon is stable. Temporal anticipation increases the range of stable settings of

(T ′, a). Interestingly, for higher reaction times, an effectively lower value of a is able to reduce the

instability of the system due to a delayed response to the input stimuli.

instability decreases strongly with increasing T ′. For T ′ < 0.6 s, this instability

mechanism is no longer observed for realistic values of a.

• For T ′ = 1.0 s, there is no longer a range of a with complete stability. Instead, both

mechanisms seem to be effective simultaneously in the range of accelerations that

was ‘optimal’ for T ′ = 0.9 s. Note that temporal anticipation increases the range of

acceleration parameter values that correspond to stable platoon dynamics.

These findings are summarized in the phase diagram shown in Fig. 4.8 as a function of

T ′ and a. Since the initial perturbation leads to a finite acceleration variance for stable

traffic as well, the stable phase has been identified by values of the acceleration variance

below 0.02 m2/s4.

4.2.4 Relation between Reaction Times and Numerical Update Times

In the simulations of Secs. 4.2.2 and 4.2.3, the update time step was chosen so small

(∆t = 0.1 s) that even smaller update time steps of, e.g., ∆t = 0.01 s, did not deliver

significantly different results. However, investigating large update time steps is interesting,

since both finite reaction times T ′ and update time steps ∆t introduce delays in the reaction

to the traffic situation, and the relative influence of both effects becomes important. A

priori, it is not clear if both effects are dynamically equivalent and, if so, for which pairs
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of values. Note that large values of ∆t are desirable as they imply a better numerical

efficiency.

We have systematically investigated the effects of various combinations of T ′ and ∆t for

the system of 100 vehicles and the perturbation discussed in Sec. 4.2.1. Figure 4.9 shows

the results in form of a ‘phase diagram’ spanned by both times for various settings of the

spatial anticipation parameter, na = 1, . . . , 4, while keeping all other parameters constant

(cf. Sec. 4.2.1). Furthermore, we have applied temporal anticipation in all simulations.

The three dynamical phases are characterized by (i) no instabilities, (ii) accident-free

instabilities which may be either of the short-wavelength or the collective long-wavelength

type (see Sec. 4.2.3), (iii) instabilities that eventually lead to accidents. Notice that the

phase boundaries for ∆t ≈ 0 s in the diagrams 4.9(a) and (d) refer to the string stability

regimes shown in Fig. 4.4(b) and (d) for a platoon size of 100 vehicles. As expected

from the results presented in Sec. 4.2, the stability boundaries are shifted towards larger

reaction times when increasing spatial anticipation from na = 1 to na = 4 vehicles. For

larger values of na, the result does not change qualitatively anymore.

Interestingly, for a given value T0 of either T ′ or ∆t, the combination (T ′ = T0, ∆t ≈ 0)

leads to a stronger destabilizing effect than the combination (T ′ = 0 s, ∆t = T0). To

explain this finding, it is essential to distinguish between the the two times conceptually:

(i) The limiting case ∆t → 0 for finite values T ′ = T0 corresponds to the exact solution

of the time-continuous model for a finite reaction time, i.e., to the delay-differential

equation (4.2) (see the horizontal axes of the diagrams in Fig. 4.9).

(ii) The case ∆t = T0 and T ′ = 0 s corresponds to the numerical solution of the model

with zero reaction time, but for large integration time steps, i.e., to a coupled iterated

map (see the vertical axes of the diagrams in Fig. 4.9).

Since the two limiting cases lead to qualitatively different mathematical models they are

obviously not equivalent. Consequently, the phase boundaries of Fig. 4.9 are not sym-

metric with respect to the axes. In Fig. 4.9(a) for example, the parameter combination

(∆t = 1.2 s, T ′ = 0.6 s) corresponds to stable traffic while (∆t = 0.6 s, T ′ = 1.2 s) leads to

crashes. Therefore, for the same numerical values, the reaction time T ′ introduces stronger

destabilizing effects than the update time interval ∆t.

This can be explained by looking more closely at the two mechanisms. In case (i), the

acceleration at any time t is calculated using the information available at t − T0, i.e.,

the delay is always given by a considered value T0. For the complementary case (ii), the

update scheme (6.4) on page 104 corresponds to instantaneously updating the acceleration

based on the actual information at time t = nT0 with integer n, and driving with this

acceleration for the whole next time step, i.e., not responding to any new information

67



4 The Human Driver Model

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

U
pd

at
e 

tim
e 

in
te

rv
al

 ∆
t(

s)

Reaction time T’(s)

(a) Spatial Anticipation na=1

stable→oscillating
oscillating→collision

∆t+2T’=2s

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

U
pd

at
e 

tim
e 

in
te

rv
al

 ∆
t(

s)

Reaction time T’(s)

(b) Spatial Anticipation na=2

stable→oscillating
oscillating→collision

∆t+2T’=2s

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

U
pd

at
e 

tim
e 

in
te

rv
al

 ∆
t(

s)

Reaction time T’(s)

(c) Spatial Anticipation na=3

stable→oscillating
oscillating→collision

∆t+2T’=2.4s

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

U
pd

at
e 

tim
e 

in
te

rv
al

 ∆
t(

s)

Reaction time T’(s)

(d) Spatial Anticipation na=4

stable→oscillating
oscillating→collision

∆t+2T’=2s

Figure 4.9: Phase diagrams of the three dynamical phases for a platoon size of 100 vehicles as a

function of the reaction time T ′ and the numerical time discretization ∆t. Diagram (a) refers to

follow-the-leader behavior (na = 1), while stability is increased for spatial anticipation over na > 1

vehicles. Besides the numerical necessity for a finite update time step ∆t, the value of ∆t can be

interpreted as ‘attention span’, i.e., as a typical length of time periods, during which drivers do

not draw their attention to the driving task.

during that time. This corresponds to an effective delay time varying between 0 and T0

as depicted in Fig. 4.10. Consequently, a reaction time T ′ = T0 should have a stronger

destabilizing effect than an update time interval of the same numerical value. This is

consistent with the results shown in Fig. 4.9. Remarkably, the borderline between stable

and oscillatory platoons is approximately given by the equation ∆t + 2T ′ = C with, e.g.,

C = 2 s in Fig. 4.9(a). This means, the destabilizing effect of a finite reaction time is about

twice as big as the one by a finite update time interval of the same numerical value or,

cum grano salis, the effective reaction time T ′
eff introduced by a finite update time interval

∆t is about

T ′
eff ≈ ∆t

2
. (4.20)

Besides the numerical necessity for a finite time discretization ∆t, the value of ∆t can be

interpreted as the typical length of time periods, during which drivers do not update their
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T’

T0

Delay time

Iterated map

Delay−differential equation

Simulation time t

Figure 4.10: Illustration of the effective delay time as a function of the continuous simulation time

for T ′ = T0 and ∆t = 0 (delay-differential equation, dashed), and for T ′ = 0 and ∆t = T0 (iterated

map, solid).

response to changes in the traffic situation. In conjunction with the update scheme (6.4),

drivers are assumed to evaluate the traffic situation at times that are multiples of ∆t and

to instantaneously adapt their acceleration to the new situation. It has been proposed

that distractions and the ‘restricted attention span’ of human drivers play an important

role in driving behavior [6]. Since the reaction time can be varied independently from the

update time interval, the combined effects of distractions and finite reaction times can be

investigated simultaneously.
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4.3 Traffic Dynamics of an Open System with a Bottleneck

In the previous section, we have investigated the HDM with respect to string stability of

a platoon of vehicles with a specific perturbation introduced by an externally controlled

lead vehicle. In this section, we will examine the opposite effects of the driver reaction

time T ′ and the spatial anticipation na on the stability of traffic and the occurring traffic

states in a more complex situation, namely an open system containing a flow-conserving

bottleneck, i.e., a road segment with a local decrease of capacity.

Specifically, we will consider a single-lane road section of total length 20 km with a bottle-

neck and open boundaries. Each simulation run covers a time interval of 3 h. We initialize

the simulations with very light traffic of density 1 vehicle/km and set all initial velocities

to 100 km/h. Note that the initial conditions are relevant only during the time interval

needed by the vehicles to cross the road section, i.e., for about the first 15 minutes. Fur-

thermore, we will assume identical drivers and vehicles of length l = 5 m, whose parameters

are given in Table 4.1. The HDM has been used with the IDM as basic underlying model.

The update time interval of the numerical integration is set to ∆t = 0.1 s.

We will simulate idealized rush-hour conditions by increasing the inflow Qin(t) at the

upstream boundary linearly from 100 veh/h at t = 0 to 2100 veh/h at t = 1 h, keeping the

traffic demand constant afterwards. Since this demand exceeds the static road capacity

Qmax
theo ≈ 2000 veh/h at the bottleneck (i.e., the maximum of the fundamental diagram,

cf. Fig. 2.6 on page 24, and Fig. 4.12 below), a traffic breakdown is always triggered,

irrespective of the stability of traffic. We have produced a flow-conserving bottleneck at

18 km ≤ x ≤ 20 km by linearly increasing the IDM parameter T from 1.1 s to 1.65 s in the

region 18.0 km ≤ x ≤ 18.5 km, setting T = 1.65 s for 18.5 km ≤ x ≤ 19.5 km, and linearly

decreasing T again from 1.65 s to 1.1 s in the region 19.5 km ≤ x ≤ 20.0 km. This leads to

a reduced capacity in this area.8

4.3.1 Spatiotemporal Traffic Flow Dynamics

In our simulations, we have varied the driver reaction time T ′ within the range 0 to 1.7 s

and the number na of vehicles considered in the spatial anticipation from 1 to 7. The

other parameters of the HDM with the IDM as underlying car-following model are kept

constant at the values listed in Table 4.1.

Figure 4.11 shows typical examples of the spatiotemporal traffic patterns occuring in the

simulations. Specifically, a congested traffic state may be either localized or extended The

criterion to discriminate between these two types of congested traffic is the width of the

congested region which, for localized clusters, is constant (and typically less than 1 km),

8For a justification of this implementation of a flow-conserving bottlenecks, see, e.g., Ref. [39].
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HDM Parameter Value

Reaction time T ′ 0 . . . 1.7 s

Number of anticipated vehicles na 1 . . . 7

Relative distance error Vs 5 %

Inverse TTC error rc 0.01/s

Error correlation times τs, τ∆v 20 s

Table 4.1: Parameters of the HDM-IDM combination with the values used in the simulations

of this section. The driver reaction time T ′ and the number na of vehicles considered in spatial

anticipation are varied. The IDM parameters for the underlying car-following model are as follows:

The desired velocity is v0 = 128 km/h, the safety time gap T = 1.1 s, the maximum acceleration

a = 1.0m/s2, the desired deceleration b = 1.5m/s2 and the jam distance s0 = 2m.

while the width of extended congested traffic is variable and depends particularly on the

inflow.

Within extended congested traffic, there exist three dynamical phases separated by contin-

uous phase transitions: (1) oscillating congested traffic (OCT), (2) homogeneous congested

traffic (HCT) and (3) triggered stop-and-go waves (TSG). As order parameter to distin-

guish between OCT (cf. Fig. 4.11a) and HCT (cf. Fig. 4.11b), we have used the variance

σ2 of the temporal velocity variations in the congested region sufficiently upstream of the

bottleneck. There, σ2 is essentially constant with respect to space and time. While, in

the case of HCT, σ2 depends mainly on the fluctuating forces and remains below 1 (m/s)2,

it jumps to more than 100 (m/s)2 and essentially becomes independent of the fluctuation

strength in the case of OCT. In contrast to OCT, TSG states reach the free branch of

the fundamental diagram, i.e., there are uncongested areas between the congested ones

(cf. Fig. 4.12 below). Nevertheless, the OCT and TSG states are hard to distinguish, as

they are not separated by a hysteretic phase transition, and the free branch between the

‘stop-and-go’ waves of TSG is approached exponentially, i.e., the definition of a somewhat

arbitrary threshold is necessary to discriminate TSG from OCT states.

Furthermore, we have observed two different kinds of localized clusters: (1) moving lo-

calized clusters (MLC) and (2) pinned localized clusters (PLC). The transition between

them is sharp. MLC move upstream at at a constant propagation velocity of about

Vg = −15 km/h, while the location of PLCs is fixed at the bottleneck. In contrast to the

IDM, for the HDM-IDM combination we have observed a coexistence of both localized

dynamical phases (see Fig. 4.11d) as required by observations [101]. Note that the second

stop-and-go wave in Fig. 4.11(d) is triggered by the boundary condition which acts as a

further bottleneck here and is consistent with observations as well.
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Figure 4.11: Spatiotemporal dynamics of typical traffic states of the phase diagram of Fig. 4.14.

The macroscopic velocity field V (x, t) is shown in a 3d plot (left column) and in a contour plot

representation (right column). (a) The special case of the IDM with fluctuations (na = 1, reaction

time T ′ = 0 s) leads to oscillatory congested traffic (OCT); (b) na = 5 anticipated vehicles and a

reaction time T ′ = 0.9 s leads to homogeneous congestion (HCT); even larger reaction times lead

to (c) triggered stop-and-go traffic (TSG) (na = 5, T ′ = 1.1 s) or (d) a combination of moving

localized clusters (MLCs) and a pinned localized cluster (PLC) (na = 6, T ′ = 1.2 s).
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4.3 Traffic Dynamics of an Open System with a Bottleneck

Remarkably, the destabilizing effects of finite reaction times can be compensated to a large

extent by the spatial and temporal anticipation of the HDM such that the resulting sta-

bility and dynamics are similar to the IDM case of zero anticipation and no reaction time.

This is illustrated by comparing Fig. 4.11(a) (no reaction time and no anticipation) with

Fig. 4.11(c) (finite reaction time and anticipation). By comparing the simulation results in

Fig. 4.11 with empirical traffic data from Ref. [101], one can see a qualitative agreement of

the spatiotemporal dynamics in many respects. Particularly, (i) the congestion pattern is

triggered by a bottleneck, (ii) the downstream front of the congestion pattern is stationary

and located at the position of the bottleneck, (iii) traffic is essentially non-oscillatory in

a region of about 1 km width near the bottleneck, (iv) further upstream, the congested

traffic consists of stop-and-go waves propagating upstream at a constant velocity, while the

period of the oscillations is variable. In addition to these qualitative aspects, there exists a

nearly quantitative agreement with respect to the propagation velocity of Vg ≈ −15 km/h.

Notice that isolated and coexisting moving localized clusters (MLCs) and pinned localized

clusters (PLCs) as shown in Fig. 4.11 have been observed in traffic data as well [101].

Figure 4.11(a) shows a complex traffic state with almost homogeneous congested traffic

near the bottleneck and stop-and-go waves further upstream. This can be understood by

distinguishing between linear and convective stability. Near the bottleneck, the congested

traffic is linearly unstable, i.e., small perturbations created by the fluctuation terms of

the model will grow. However, while growing, the perturbations travel upstream and are

eventually propagating out of the system, leaving homogeneous congested traffic behind.

This means, the congested region near the bottleneck is convectively stable. Thus, the

sometimes observed complex transition from free traffic via homogeneous congested traffic

(‘synchronized traffic’) to stop-and-go traffic can possibly be explained by fluctuation terms

in the acceleration equation, connected with a congested region near the bottleneck that

is linearly unstable, but convectively stable.9

4.3.2 Time Series and Flow-Density Relations

Figure 4.12 shows flow-density data of virtual detectors located at x = 14 km and at

x = 17 km (5 km and 2 km upstream of the bottleneck, respectively) with a sampling

period of 1 min. The data for OCT, 4.12(a) and TSG, 4.12(c), cover a two-dimensional

area in the congested area which is in agreement with the wide scattering observed in

empirical flow-density data [88, 4, 118].

Since the HDM has a unique equilibrium flow-density curve and since we have simulated

9Notice that, apart from fluctuations, Fig. 4.11(a) corresponds to a simulation of the underlying IDM.
Since the nature of the fluctuations is not relevant (cf. Sec. 4.1.2), a similarly complex state can even
be simulated with the purely deterministic IDM (or with other models) if other fluctuation sources are
present, e.g., a fluctuating bottleneck strength.
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Figure 4.12: Simulated flow-density data at cross sections x = 14 km and x = 17 km measured by

a virtual detector with a sampling interval of 60 s. The spatiotemporal dynamics of the depicted

four simulation scenarios is shown in Fig. 4.11 on page 72.

identical driver-vehicle units, the observed scattering implies that the simulated congested

traffic is out of equilibrium. In the simulations, possible forces bringing traffic out of

equilibrium are the fluctuation terms of the HDM and traffic instabilities. It turns out

that traffic instabilities contribute much more to the scattering of the flow-density data

than the fluctuation terms.10 Moreover, the distance from the equilibrium curve (and thus

the area of scattering), is increased by long relaxation times back to equilibrium. These

are implied by the adaptation of the driver behavior to the traffic environment as discussed

in connection with the ‘memory effect’ in Sec. 4.1.6 (cf. Ref. [121]).

Figure 4.13 shows average velocity time series V (t) of the same virtual detectors. Com-

pared to the IDM with fluctuations in diagram 4.13(a), the finite reaction times and

anticipations of the HDM lead to a larger period of velocity oscillations (about 8 min in

the diagram 4.13c) compared to 4 min in diagram 4.13a) and to softer upstream conges-

tion fronts, i.e., to lower velocity gradients. Remarkably, the periods and gradients of

the velocity time series of the HDM agree well with those of real stop-and-go traffic data

[101, 123], whereas the IDM and many other car-following models yield too short time

periods.

10Note, however, that in real traffic the heterogeneity of the driving styles and vehicle types plays an
important role as well [88, 4, 118].
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Figure 4.13: Velocity time series measured by virtual detectors located at x = 14 km and x = 17 km

for the simulation scenarios discussed in Sec. 4.3.3. Notice the increase of the oscillation wavelength

in the scenarios (c) and (d) with anticipation compared to (a) without anticipation which is in

agreement with empirical observations.

Besides stability issues, the HDM simulation results agree better with empirical traffic

data in the following aspects: (i) Compared to the underlying IDM, the HDM simulation

shows larger oscillation periods and the transitions between ‘stop’ and ‘go’ are smoother.

(ii) Coexisting PLCs and MLCs are observed both in the HDM and in real traffic data

[101]. (iii) Near the bottleneck, the HDM regularly produces traffic of relatively high flow

and density (‘general pattern’), while one needs a fine-tuning of the parameters to produce

these states with the IDM alone.

4.3.3 Phase Diagram of Congested Traffic States

Let us finally investigate the destabilizing influence of the reaction time T ′ and the sta-

bilizing effects of na in a more systematic way. We have varied the number of vehicles

used for the spatial anticipation from na = 1 to na = 7. For each value of na, we have

varied the reaction time in steps of 0.05 s. By associating qualitatively different simulation

results with different dynamical traffic phases as discussed in the previous Sec. 4.3.1, we

have obtained a phase diagram in the space spanned by na and T ′, see Fig. 4.14. The

lower left corner of Fig. 4.14 corresponds to the special case of the IDM with fluctuations,

i.e., to the case of zero reaction time T ′ = 0 and consideration of the immediate front

vehicle only, i.e., na = 1. In this case, the simulation results in OCT, see Fig. 4.11(a) as

discussed before. Varying na and T ′ leads to the following main results:
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Figure 4.14: Phase diagram of congested traffic states in the phase space spanned by the number na

of considered leaders and the reaction time T ′ in the open system with a bottleneck as described in

the text. The dynamic phases HCT (homogeneous congested traffic), OCT (oscillatory congested

traffic), TSG (triggered stop-and-go traffic) and MLC and PLC (moving and pinned localized

clusters) are discussed in the main text.

• Traffic stability increases drastically, when spatial anticipation is increased from

na = 1 to na = 6, while no significant (qualitative) changes are observed for na > 6.

• For a sufficiently large number of anticipated vehicles, the congestion pat-

tern becomes stable, corresponding to homogeneous congested traffic (HCT), see

Fig. 4.11(b).

• Increasing the reaction time T ′ destabilizes traffic and finally leads to crashes. For

a given value of na, the critical threshold T ′
c2 for crashes is somewhat lower than

in the simulations of Sec. 4.2.2 which is caused by the more complex simulation

scenario and by the higher braking decelerations activated by the traffic breakdown.

In contrast, the boundary to the HCT states essentially corresponds to the threshold

T ′
c1 for string stability.

• Other extended congested traffic states are found as well. Triggered stop-and-go

waves (TSG) are shown in Fig. 4.11(c). In addition, we found a (spatial) coexistence

of moving localized clusters (MLC) and pinned localized clusters (PLC) in the course

of the freeway, see Fig. 4.11(d).

• The results are robust against variations of the stochastic HDM parameters or when

the correlated noise is replaced by white acceleration noise (cf. Sec. 4.1.2).
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The phase diagram shown in Fig. 4.14 contained qualitatively the same spatiotemporal

congested states as found in Refs. [34, 122, 123]. At first sight, this seems surprising. In

these publications, the different phases are a consequence of different traffic demands on

the main road and an on-ramp. Therefore, besides using a different model, the control

parameters making up the phase space were extrinsic in the previous work, while the phase

space is spanned by intrinsic model parameters (i.e., reaction time T ′ and the number of

leading vehicles na) in the present work. Different traffic states can be produced not

only by varying the ‘bottleneck strength’, but also by varying model parameters that

influence stability. Thus, variations of both kinds of control parameters, i.e., extrinsic flow

parameters and intrinsic capacity and stability limits, can lead to phase transitions.

4.4 Discussion and Conclusions

Finite reaction times and errors in estimating the input variables are essential factors of

human driver behavior affecting the performance and stability of vehicular traffic. This ap-

plies not only to human drivers, but (to a smaller extent) also to realistic driver-assistance

systems [65, 78]. Human drivers, on the other hand, compensate for these destabiliz-

ing effects by looking several vehicles ahead, anticipating the future traffic situation, and

adapting to the traffic environment. Nevertheless, simple models such as the Optimal

Velocity Model and its generalizations [3, 21, 50] or the IDM already allow to describe

many, particularly macroscopic, aspects of the traffic dynamics. The question arises why,

despite their conceptual shortcomings, these models work so well. This question becomes

even more pressing because of the fact that all of the above models (including the IDM)

produce unrealistic dynamics and collisions when simulating with realistic reaction times

which are of the order of 1 s [28]. In this chapter we have shown that, to a large extent,

the destabilizing effects of reaction times and estimation errors can be compensated for by

spatial and temporal anticipations: For certain combinations of the relative strength of

these effects, one obtains essentially the same collective longitudinal dynamics as without

consideration of any of these effects. This result explains the good performance of the

underlying simple car-following models. Note, however, that the wavelengths of the stop-

and-go waves with the HDM extensions are larger and the transitions between ‘stop’ and

‘go’ are smoother than those of the IDM (and other car-following models) in agreement

with observations. Obviously, multi-anticipation plays a role for the collective dynamics

in real traffic.

In order to put the mutual balance of stabilizing and destabilizing effects into a more

general context, we have proposed and studied the Human Driver Model (HDM) which

is formulated as a meta model that can be used to extend a wide class of car-following

models, where the acceleration depends only on the positions, velocities and accelerations
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of the own and the preceding vehicle. The HDM explicitly takes into account the effects

of (i) reaction times, (ii) imperfect estimation capabilities, (iii) temporal anticipation and

(iv) multi-vehicle anticipation.11 The HDM has two deterministic parameters, namely the

reaction time T ′ and the number na of anticipated vehicles. The only stochastic contri-

butions of the HDM come from modeling finite estimation capabilities. The stochastic

sources Vs and rc characterize the degree of the estimation uncertainty of the drivers,

while τ denotes the correlation time of errors. All human-driver extensions are turned off

and the original basic model is recovered by setting T ′ = 0, na = 1 and Vs = rc = 0. By

applying the HDM extensions to the IDM, we have provided quantitative details of the

balance conditions and the remaining differences in the traffic dynamics. This involves

validity criteria for the applicability of simpler car-following models.

In the context of microscopic traffic models, there are three characteristic time constants

that influence the dynamics and stability of traffic flow: The reaction time T ′ of the

drivers, the velocity adaptation time τv needed to accelerate to a new desired velocity,

and the numerical update time ∆t.12 Based on the model-independent formulation of the

HDM, we have investigated how these times interplay with each other and influence the

instability mechanisms by simulating the local and string stability of a platoon of vehicles

with the IDM as underlying acceleration model for various combinations of the three times.

When comparing the reaction time with the velocity adaptation time τv, we have obtained

the interesting result that the ‘optimal’ acceleration (and deceleration) to obtain a maxi-

mum stability depends on the reaction time: The higher the reaction time, the lower the

optimal accelerations. Therefore, a finite reaction time of 1 s can be partially compensated

by an optimized, i.e., effectively lowered acceleration capability.

We found that, in fact, the reaction time and the update time have a similar dynamical

effect since both introduce instabilities via the local short-wavelength mechanism, while

the velocity adaptation time triggers instabilities via collective long-wavelength instabili-

ties. Consequently, it is correct to interpret the update time of iterated maps (such as the

Gipps model [26] or the Newell model [87]) as a measure for the reaction time, although,

obviously, iterated maps are qualitatively different from delay-differential equations. Re-

markably, the numerical update time is dynamically equivalent to about half the reaction

time. Consequently, a reaction time T ′ has a stronger destabilizing effect than an update

11Moreover, human drivers also adapt their driving style to the traffic situation on a longer time scale such
that the actual driving style depends on the traffic conditions during the last few minutes (‘frustration
effect’) [121, 125].

12Note that even a fourth time scale, namely the ‘safety time gap’ between two vehicles, is connected with
but different from the reaction time. We emphasize that, in general, the ‘desired’ time gap T of the
IDM is not equivalent to any of the three other times T ′, ∆t or τv. While the safety time gap T is a
characteristic parameter of the driving style, the reaction time T ′ is essentially a physiological parameter

and, consequently, at most weakly correlated with T . The time gap T has, however, a strong influence
on the stability of traffic flow since it determines the upper limit for the cumulative time delays of the
control path from the acceleration to the desired distance.

78



4.4 Discussion and Conclusions

time interval of the same numerical value.
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5 The Lane-Changing Model MOBIL

So far, we have successfully applied single-lane car-following models to describe traffic

dynamics. Particularly, collective phenomena such as traffic instabilities and the spa-

tiotemporal dynamics of congested traffic can be well understood within the scope of

single-lane traffic models. There are, however, situations where lane changes play an es-

sential role such as modeling on-ramp and off-ramp bottlenecks. Moreover, real traffic

consists of different types of vehicles, e.g., cars and trucks. For obvious reasons, such

heterogeneous traffic streams can only be described realistically within a multi-lane mod-

eling framework, allowing faster vehicles to improve their driving conditions by passing

slower vehicles. Consequently, lane-changing models are an important component of any

microscopic multi-lane traffic simulation software (cf. the following Chap. 6).

This chapter is structured as follows: Sec. 5.1 will provide an introduction and motiva-

tion of the presented modeling approach. In Sec. 5.2, the lane-changing model MOBIL

will be formulated both for symmetric (‘US’) and asymmetric (‘European’) passing rules.

In Sec. 5.3, the MOBIL rules will be applied to multi-lane traffic simulations with open

boundary conditions in combination with the Intelligent Driver Model (Chap. 2) as under-

lying longitudinal car-following model. Finally, we will conclude with a discussion of the

proposed model and a generalization of the MOBIL concept to other decision processes

occuring in traffic simulations, e.g., when approaching traffic lights and yielding right of

way (Sec. 5.4).

5.1 Introduction to the Modeling Approach

Recently, freeway lane-changing has received increased attention [67, 42, 16, 131, 9, 85].

Since lane-changing maneuvers often act as initial perturbations, it is crucial to under-

stand their impact on the capacity, stability and breakdown of traffic flows. Particularly

near bottleneck sections such as on-ramps and off-ramps, lane changing is often a signif-

icant ingredient to trigger a traffic breakdown (provided that the traffic volume is high).

Additionally, the drivers’ lane-changing behavior has direct influence on traffic safety.

Despite its great significance, lane-changing has by far not been studied as extensively

as the longitudinal acceleration and deceleration behavior. One reason for this is the

scarcity of reliable data [43, 7], because neither cross-sectional data from detectors nor
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floating car data are sufficient to empirically determine typical lane-changing properties

such as the rate of lane changes or the gaps and velocities of the cars affected by a lane

change. Therefore, only a few empirical studies about lane-changing rates as a function of

traffic flow or density are available [109, 140]. Recent progress in video tracking methods,

however, allows for a collection of high-quality trajectory data from aerial observations

[48, 154]. These 2D data will become more and more available in the future and will allow

for a more profound understanding of the microscopic lane-changing processes.

The modeling of lane changes is typically considered as a multi-step process: On a strategic

level, the driver knows about his or her route in a network which influences the lane

choice, e.g., with regard to lane blockages, on-ramps, off-ramps or other mandatory merges

[114]. In the tactical stage, an intended lane change is prepared and initiated by advance

accelerations or decelerations of the driver and possibly by coordination of drivers on the

target lane [42]. In the operational stage, the driver determines whether an immediate

lane change would be both safe and desired [27]. This choice has been often described

by gap-acceptance models, in which drivers compare the available gaps to the smallest

acceptable gap, the critical gap. In general, critical gaps depend on the speed of the

subject vehicle, on the relative speed with respect to those of the lead and the lag vehicles

in the adjacent lane and on the type of lane change [115]. Most lane-changing models in

the literature classify lane changes as either mandatory or discretionary [27, 138, 1, 115, 30,

108]. While mandatory changes are performed for strategic reasons, the driver’s motivation

for discretionary lane changes is a perceived improvement of the driving conditions in the

target lane compared to the respective current situation.

This thesis chapter presents a lane-changing model for microscopic car-following models

which only deals with the operational decision process. When considering a lane change,

we assume that a driver makes a trade-off between the expected own advantage and the

disadvantage imposed on other drivers. In particular, the model takes the follower in the

target lane into account. For a driver considering a lane change, the subjective utility of a

change increases with the gap to the new leader on the target lane. However, if the velocity

of this potential leader is lower, it may be favorable to stay in the present lane in spite of

the smaller gap. A criterion for the utility including both situations is the difference of the

expected accelerations (or decelerations) after and before the lane change. In this work, we

therefore propose to use as utility function this acceleration difference, evaluated with an

underlying microscopic longitudinal traffic model. Our approach assumes that the higher

the acceleration on a given lane, the nearer it is to the ‘ideal’ acceleration on an empty

road and the more attractive it is to the driver. Therefore, the basic idea of the proposed

lane-changing model is to formulate the anticipated advantages and disadvantages of a

prospective lane change in terms of single-lane accelerations.

Compared to explicit gap-based lane-changing models, the formulation in terms of accel-
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erations of a longitudinal model has several advantages:

• The assessment of the traffic situation is transferred to the acceleration function of

the car-following model which allows for a compact and widely applicable model for-

mulation with a small number of additional parameters. In contrast to the classical

gap-acceptance approach, critical gaps are not explicitly taken into account.

• It is ensured that both longitudinal and lane-changing models are consistent with

each other. For example, if the longitudinal model is collision-free, the combined

models will be accident-free as well.

• Any features of the longitudinal model such as anticipation is automatically trans-

ferred to the lane-changing model.

Apart from using accelerations as utility functions, the main novel feature of the proposed

lane-changing model consists in taking into account the (dis-)advantage of the followers

via a politeness parameter. By adjusting this parameter, the motivations for lane-changing

can be varied from purely egoistic to a more altruistic behavior. Particularly, there exists

a value where lane changes are carried out only if this increases the weighted accelerations

of the lane-changing driver and all affected neighbors. This strategy can be paraphrased

by the acronym ‘Minimizing Overall Braking Induced by Lane Changes’ (MOBIL). In the

following, we will refer to our concept by this acronym, regardless of the value of the

politeness parameter.

Note that all lane-changing models cited before assume egoistic behavior. With the po-

liteness factor one can model two common lane-changing behavior. First, even if both

the safety criterion and the ‘egoistic’ incentive criterion are satisfied, most drivers will

not change lanes for a marginal advantage if this obstructs other drivers. Secondly, in

countries with asymmetric lane-changing rules, ‘pushy’ drivers on a ‘fast lane’ may induce

a slower driver in front to change to a slower lane in order to be no longer obstructed

(typically, passing on the ‘slow’ lane is forbidden in these countries).

5.2 Model Formulation

As introduced in Sec. 1.2, the acceleration of car-following models is of the general form

aα :=
dvα

dt
= a(sα, vα, ∆vα). (5.1)

That is, the motion of a single driver-vehicle unit α depends on its velocity vα, the gap sα

to the front vehicle (α− 1) and the relative velocity ∆vα = vα − vα−1. Some examples are

Optimal Velocity Model [3], the IDM (see Chap. 2) or the Velocity Difference Model [40,
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n

co

Figure 5.1: Sketch of the nearest neighbors of a central vehicle c considering a lane change to

the left. The new and old successors are denoted by n and o, respectively. Accelerations after a

possible change are denoted with a tilde.

50]. In the following, we will formulate MOBIL for this class of models. Generalizations

to models taking into account more than one predecessor or an explicit reaction time as

the HDM (cf. Chap. 4) are straightforward.1

A specific lane change, e.g., from the center lane to the outer (passing) lane as shown in

Fig. 5.1, generally depends on the leader and the follower on the present and the target

lane, respectively. In order to formulate the lane-changing criteria, we use the following

notation: For a vehicle c considering a lane change, the followers on the target and present

lane are represented by n and o, respectively. The acceleration ac denotes the acceleration

of vehicle c on the actual lane, while ãc refers to the situation on the target lane, i.e., to

the expected acceleration of vehicle c on the target lane for the same position and velocity.

Likewise, ão and ãn denote the acceleration of the old and new followers after the lane

change of vehicle c. Notice that the leader on the target lane is the nearest vehicle on this

lane for which the position is x > xc. Likewise for the followers for which x < xc. This

also applies for the case where the vehicles on neighboring lanes are nearly side by side

and a possible change would lead to negative gaps. In this case, the longitudinal model

must return a very high braking deceleration such that such lane changes are excluded by

the criteria to be discussed below.

5.2.1 Safety Criterion

Like other lane-changing models [27], we consider an incentive to change lanes and ad-

ditional safety constraints. Our safety criterion checks the possibility of executing a lane

change by considering the effect on the follower n in the target lane as depicted in Fig. 5.2.2

Formulated in terms of longitudinal accelerations, the safety criterion guarantees that, af-

ter the lane change, the deceleration ãn of this vehicle does not exceed a given safe value

1The question about the role of reaction times is of minor importance for lane-changing decision. In a
good approximation, one can even neglect the delay for a lane-changing decision because the driver’s
anticipation will compensate for the reaction time.

2The ‘critical gap’ to the new leader for the subject vehicle c is evaluated by the MOBIL incentive
criterion, see below.
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Figure 5.2: Illustration of the safety criterion (5.2) when considering a lane change: The accelera-

tion of the follower n in the new (left) lane has to be larger than the threshold −bsafe. Therefore,

the parameter bsafe sets a lower bound to the perturbation strength due to lane changes.

bsafe, i.e.,

ãn ≥ −bsafe. (5.2)

Although formulated as a simple inequality, this condition implicitly contains all the de-

pendencies reflected by the longitudinal car-following model, as the acceleration ãn(t)

typically depends on the gap, the velocity and the approaching rate, cf. Eq. (5.1). That

is, if the longitudinal model has a built-in sensitivity with respect to velocity differences,

this dependency is inherited to lane-changing decisions. In this way, larger gaps between

the following vehicle in the target lane and the own position are required to satisfy the

safety constraint if the following vehicle is faster than the changing vehicle. In contrast,

smaller gaps are acceptable if the following vehicle is slower. Compared to conventional

gap-acceptance models, this approach depends on gaps only indirectly, via the dependence

on the longitudinal acceleration.

By formulating the criterion in terms of safe braking decelerations of the longitudinal

model, collisions due to lane changes are automatically excluded. For realistic longitudinal

models, bsafe should be well below the maximum possible deceleration bmax which is about

9 m/s2 on dry road surfaces.3 Increasing the value for bsafe generally leads to stronger

perturbations due to individual lane changes, but the braking reaction of the follower on

the target lane is always limited by the value of bsafe. This is relevant in traffic simulations

due to the fact that performing a lane change implies a discontinuous change in the input

parameters in the acceleration function of the new follower.

5.2.2 Incentive Criterion for Symmetric Lane-Changing Rules

An actual lane change is only executed if, besides the safety criterion, the incentive criterion

is simultaneously fulfilled. The incentive criterion typically determines whether a lane

change improves the individual local traffic situation of a driver. In the presented model,

we propose an incentive criterion that includes a consideration of the immediately affected

3Note that the maximum safe deceleration bsafe prevents accidents even in the case of totally selfish
drivers as long as its value is not greater than the maximum possible deceleration bmax of the underlying
longitudinal model.
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neighbors as well (see Fig. 5.3). A politeness factor p determines to which degree these

vehicles influence the lane-changing decision of a driver. For symmetric overtaking rules,

we neglect differences between the lanes and propose the following incentive criterion for

a lane-changing decision of the driver of vehicle c:

ãc − ac
︸ ︷︷ ︸

driver

+p
(
ãn − an
︸ ︷︷ ︸

new follower

+ ão − ao
︸ ︷︷ ︸

old follower

)
> ∆ath. (5.3)

The first two terms denote the advantage (utility) of a possible lane change for the driver

him- or herself, where ãc refers to the new acceleration for vehicle c after a prospective

lane change. The considered lane change is attractive if the driver can accelerate more,

i.e., go faster in the new lane. The third term with the prefactor p is an innovation

of the presented model. It denotes the total advantage (acceleration gain – or loss, if

negative) of the two immediately affected neighbors, weighted with the politeness factor

p (see Fig. 5.3). It can of course be argued to take into account only the new follower,

at least to give him more weight than to the old follower, who will anyway find him- or

herself in an advantageous situation after the lane change of the leading vehicle. However,

it is straightforward to adapt Eq. (5.3) accordingly. Finally, the switching threshold ∆ath

on the right-hand side of Eq. (5.3) models a certain inertia and prevents lane changes if

the overall advantage is only marginal compared to a ‘keep lane’ directive.

In summary, the incentive criterion is fulfilled if the own advantage (acceleration gain) is

greater than the weighted sum of the disadvantages (acceleration losses) of the new and

old successors and the threshold ∆ath.
4 Note that the threshold ∆ath influences the lane-

changing behavior globally, while the politeness parameter affects the lane-changing behav-

ior locally, i.e., with respect to the involved neighbors. As for the safety constraint (5.2),

our incentive criterion is more general than a simple gap-based rule. If the longitudinal

model is sensitive to velocity differences, there may be an incentive for a lane change even

if the gap on the new lane is smaller – provided that the leader on the new lane is faster.

The generalization to traffic on more than two lanes per direction is straightforward. If,

for a vehicle on a center lane, the incentive criterion is satisfied for both neighboring lanes,

the change is performed to the lane where the incentive is larger.

Since the disadvantages of other drivers and the own advantage are balanced via the po-

liteness factor p, the lane-changing model contains typical strategic features of classical

game theory. The value of p can be interpreted as the degree of altruism. It can vary

4In fact, the incentive criterion (5.3) automatically includes a ‘safety component’ for the lane-changing
vehicle. Even for the most aggressive parameter settings (p = 0 and ∆ath = 0), lanes are only changed
if, on the new lane, the acceleration is higher or, equivalently, the necessary braking deceleration is lower
than on the present lane (it may, nevertheless, be greater than bmax). Consequently, criterion (5.3) can
only be true if the new lane is ‘safer’ than the old lane. The only requirement for the acceleration
model is that, in dangerous situations, it should return a braking deceleration that increases when the
situation becomes more critical – a condition that any reasonable longitudinal model should fulfill.
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Figure 5.3: Illustration of the decision process for a lane change to the left lane with symmetric

MOBIL rules. The incentive criterion (5.3) compares the acceleration of the considered vehicle c in

the actual and, virtually, in the left lane. The proposed model also takes into account the following

driver-vehicle units by weighting their old and new accelerations with the politeness parameter p.

from p = 0 (for selfish lane-hoppers) to p > 1 for altruistic drivers, who do not change if

that would deteriorate the traffic situation of the followers. They would even perform dis-

advantageous lane changes if this would improve the situation of the followers sufficiently.

In the special case p = 1 and ∆ath = 0, the incentive criterion simplifies to

ãc + ãn + ão > ac + an + ao. (5.4)

Thus, lane changes are only performed, when they increase the sum of accelerations of all

involved vehicles which corresponds to the concept of ‘Minimizing Overall Braking Induced

by Lane Changes’ (MOBIL) in the strict sense. When setting the safe braking threshold to

the desired braking deceleration, i.e., bsafe = b, the strict MOBIL strategy corresponding

to p = 1 has no free parameters and might therefore be considered as a ‘minimal model’

for lane-changing decisions.

5.2.3 Incentive Criterion for Asymmetric Passing Rules

In most European countries, the driving rules for lane usage are restricted by legislation.

We now formulate an asymmetric lane-changing criterion for two-lane freeways and as-

sume, without loss of generality, that the right lane is the default lane, i.e., we implement

a ‘keep-right’ directive.5 Specifically, we presuppose the following ‘European’ traffic rules:

(i) Passing rule: Passing on the right-hand lane is forbidden, unless traffic flow is bound

or congested, in which case the symmetric rule (5.3) applies. We treat any vehicle

driving at a velocity below some suitably specified velocity vcrit, e.g., vcrit = 60 km/h,

as driving in bound or congested traffic.

(ii) Lane usage rule: The right lane is the default lane. The left lane should only be

used for the purpose of overtaking.

5The reformulation for left-oriented traffic describing, e.g., traffic rules in the UK as well as the general-
ization to more than two lanes are straightforward.
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The passing rule is implemented by replacing the longitudinal dynamics on the right-hand

lane by the condition

aEur
c =

{

min(ac, ãc) if vc > ṽlead > vcrit,

ac otherwise,
(5.5)

where ãc corresponds to the acceleration on the left lane and ṽlead denotes the velocity of

the front vehicle on the left-hand lane. The passing rule influences the acceleration on the

right-hand lane only (i) if there is no congested traffic (ṽlead > vcrit), (ii) if the front vehicle

on the left-hand lane is slower (vc > ṽlead) and (iii) if the acceleration ãc for following this

vehicle would be lower than the single-lane acceleration ac in the actual situation. Notice

that the condition vc > ṽlead prevents that vehicles on the right-hand lane brake whenever

they are passed.

The ‘keep-right’ directive of the lane-usage rule is implemented by a constant bias ∆abias in

addition to the threshold ∆ath. Furthermore, we neglect the disadvantage (or advantage)

of the successor in the right lane in Eq. (5.3) because the left lane has priority6, see Fig. 5.4.

Explicitly speaking, the resulting asymmetric incentive criterion for lane changes from left

to right reads

ãEur
c − ac + p (ão − ao) > ∆ath − ∆abias, (5.6)

while the incentive criterion for a lane change from right to left is given by

ãc − aEur
c + p (ãn − an) > ∆ath + ∆abias. (5.7)

Again, the quantities with a tilde refer to the new situation after a prospective lane change.

While the parameter ∆abias is small, it clearly has to be larger than the threshold ∆ath.

Otherwise, the switching threshold would prevent changes to the right-hand lane even on

an empty road.

Neglecting the follower on the right-hand lane allows to model the following situation:

Via the politeness factor p, a driver on the right lane considering a lane change to the left

takes into account the disadvantage of the approaching vehicle in the target lane. This can

prevent the considered lane change, even if the lane change is not critical which is assured

by the safety criterion (5.2). This feature of the MOBIL lane-changing model realistically

reflects a perceptive and anticipative driving behavior, as commonly observed for asym-

metric passing rules. Furthermore, by taking into account only the follower on the faster

(left) lane via the politeness factor p, one models a selective dynamic pressure to change

lanes that faster (possibly tailgating) drivers on the fast (left) lane exert on their slower

predecessors, see Fig. 5.4. This is a frequently observed behavior on European freeways,

particularly on Germany freeways with their wide distribution of desired velocities. Notice

6This does not mean that this vehicle will be ignored, because the safety criterion is applied in any case.
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Figure 5.4: The asymmetric incentive criterion additionally includes only the following driver-

vehicle unit in the (left) passing lane. The sketch illustrates the ‘dynamic pressure’ which is

imposed by a fast follower o to the vehicle c. The succeeding driver may induce a lane change of

vehicle c to the right lane if the disadvantage (of being hindered) exceeds the own disadvantage in

the right lane. This ‘passive cooperation’ of the subject c is frequently observed in countries with

asymmetric lane-changing rules, e.g., after having passed a slow truck. Notice that the decision

process for a lane change to the left is similar to the situation depicted in Fig. 5.3.

that, in any case, the safety criterion (5.2) prevents a critical lane change to the slower

lane.

5.3 Multi-Lane Traffic Simulations

We will now apply the MOBIL concept to computer simulations of a two-lane freeway. As

underlying acceleration model, we will use the Intelligent Driver Model (IDM) as described

in Chap. 2. The sensitivity of the IDM to velocity differences automatically results in lane-

changing rules that depend on velocity differences as well. Particularly, a lane change may

be favorable even if the gap on the target lane is smaller, provided that the velocity of the

leading vehicle on that lane is higher.

The lane-changing behavior does not only depend on the lane-changing and the car-

following model, but also on the heterogeneity of the driver-vehicle units and on the

infrastructure. Particularly, for identical driver-vehicle units on a homogeneous ring road,

a stationary state would be reached soon. To avoid this artifact, we have introduced

heterogeneity by implementing two types of vehicles. The slower ‘trucks’ differ in their

reduced desired velocity v0 = 80 km/h compared to the faster ‘cars’ (v0 = 120 km/h). We

have assumed uniformly distributed velocities within each class as well. More specifically,

we assumed velocities between 64 km/h and 96 km/h for trucks, and between 96 km/h

and 144 km/h for cars. We assumed a truck fraction of 20% and the vehicle length was

assumed to be 4 m for cars and 12 m for trucks. Moreover, we have used the following

further IDM parameters: The safety time gap was set to T = 1.2 s, the maximum acceler-

ation to a = 1.5 m/s2, the desired deceleration to b = 2 m/s2 and the minimum distance

to s0 = 2 m. The values of the MOBIL parameters used in the simulations are listed in

Table 5.1.

The incentive criterion is evaluated in each numerical update step in the simulation, i.e.,

89



5 The Lane-Changing Model MOBIL

MOBIL Parameter Value

Politeness factor p 0 . . . 1

Changing threshold ∆ath 0.1 m/s2

Maximum safe deceleration bsafe 4.0 m/s2

Bias for right lane ∆abias 0.3 m/s2

Table 5.1: Parameters of the MOBIL lane-changing model. The politeness parameter p of the in-

centive criterion mainly determines the lane-changing rate. The changing threshold ∆ath prevents

lane changes of marginal advantage. The maximum safe deceleration bsafe serves as additional

safety criterion. The value of bsafe is chosen considerably below the physically possible maximum

deceleration of about 9m/s
2

on dry roads. In the case of asymmetric (‘European’) lane-changing

rules, the additional bias ∆abias models a preferred lane-usage of the default lane. The values are

used in the simulations in combination with the Intelligent Driver Model (IDM).

the drivers continuously check their incentives. If a lane change is favorable and safe,

the lane change is performed immediately, i.e., the transition time from the present lane

to the target lane is neglected. Notice that this implies a discontinuous acceleration for

the considered vehicle and also for the old and new successors. However, as the velocity

is given by integrating up the acceleration, the velocities of all vehicles (and the accel-

erations of all other vehicles not directly involved in the lane change) remain continuous

in time.7 We have checked the simulation results for different numerical update steps

(∆t = 0.25, 0.1 and 0.01 s). However, we found only a negligible quantitative difference of

the lane-changing rates, regardless of the density and the value of p (see Fig. 5.5).

Notice that the discrete nature of the lane-changes could potentially lead to situations

where slight differences in the input quantities lead to huge effects, i.e., lane changes or

not at a given time t. By simulations, however, we verified that the frequency of such

events is of the order of the update time step. That is, the multi-lane model based on the

IDM and MOBIL is mathematically consistent in the sense that the numerical results for a

limited simulation period converge in the limit ∆t → 0 s.8 This is remarkable since, to our

knowledge, there is no published lane-changing model that does not explicitly depend on

the numerical update step. For the following simulations, we have applied the ‘modified

Euler’ integration scheme with an update interval ∆t of 0.25 s for updating the longitudinal

dynamics (see Chap. 6).

When evaluating the MOBIL accelerations of the old and new followers, one has, in prin-

7Of course, it is possible to enforce continuous acceleration changes as well, but this is not important
here.

8Therefore, the local consistency order 1 remains valid with respect to a suitable norm such as ||x||p =
R t1

t0
dt|x|p where p > 0 and x(t) is, e.g., the deviation between s(t) for finite ∆t and the exact solution.
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(a) Symmetric lane-changing rules with p=0
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(b) Symmetric lane-changing rules with p=1
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Figure 5.5: Lane-changing rate for various numerical update steps ∆t = 0.01, 0.1, and 0.25 s in an

open system. The diagrams show that the frequency of (discretionary) lane changes is independent

from ∆t regardless of the traffic density and the setting of the politeness parameter p (see the main

text). For the simulation scenario and the measurement of the lane-changing rate (here for a road

segment of 1 km located around x = 5.5 km), we refer to Sec. 5.3.2 on page 92.

ciple, the freedom to evaluate the accelerations, using the own model parameter set or

that of the respective successors. Clearly, using the driving parameters of the followers is

in line with the reasoning behind MOBIL, although they are not directly observable by

the driver planning a lane change. However, strong cues are given to the driver both by

the vehicle type (truck, family car, sports car) and by the past driving style. Therefore,

we evaluate all MOBIL accelerations with the model parameters of the driver-vehicle unit,

for which the respective acceleration is relevant.

5.3.1 Spatial Distribution of the Lane-Changing Rate

In this section, we apply the proposed lane-changing model in simulations of discretionary

and mandatory lane changes. We have simulated a two-lane road section of 10 km length

with open boundary conditions. For an open system, the inflow at the upstream boundary

is the natural control parameter. The inflow at the upstream boundary has been kept

constant at 1000 vehicles/h/lane. Furthermore, we have assumed an on-ramp (of merging

length 300 m) centered at the location x = 7.5 km with a constant inflow of 500 vehicles/h.

The mandatory merge from the on-ramp to the right lane of the freeway is modeled by a

‘virtual vehicle’ standing at the end of the merging lane which is otherwise treated as a

third, i.e., additional lane. Due to the imposed deceleration in order to avoid a collision

in case the merging cannot be performed in time, the attractiveness of the merging lane

automatically decreases. Consequently, the incentive to merge to the freeway increases,

when approaching the standing vehicle. To support lane-changing in this situation, we

assume an egoistic behavior of merging vehicles by temporarily setting p = 0.
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Figure 5.6: Distributions of the lane-changing rate as a function of the longitudinal spatial coor-

dinate for p = 0 (left) and p = 1 (right).

The simulation results are evaluated in Fig. 5.6 which shows the distribution of lane-

changing events as a function of the longitudinal coordinate. The lane-changing rate

measures the performed lane changes per kilometer and hour. The setting of p only

determines the absolute number of lane changes, but does not change the qualitative

behavior. For any value of p, the lane-changing rate is nearly homogeneously distributed

sufficiently far up- and downstream of the on-ramp. In a range of about 500 m around the

center of the on-ramp located at x = 7.5 km, the number of lane changes to the left lane

is increased by approximately a factor of 4, while the changes to the right lane are slightly

reduced. Thus, the on-ramp locally induces a strongly increased activity of discretionary

lane changes from the right to the left lane, while the number of lane changes from the

left to the right is reduced. Since vehicles merge from the on-ramp to the right lane of

the freeway, the right lane becomes less attractive for vehicles on the freeway upstream

of the merging zone. This demonstrates the strong dependence of lane-changing behavior

on spatial inhomogeneities of the road. The relative increase is even higher for ‘polite’

drivers (p = 1) compared to ‘egoistic’ ones (i.e., for p = 0). This is plausible because, due

to the conservation of the vehicle number and the symmetry between the lanes, the area

between the upper and lower curves of Fig. 5.6(a) and (b) must be equal to the on-ramp

flow. Note that the lane-changing rate is slightly increased downstream of the on-ramp

because of the increased traffic density (see the lane-changing rate as a function of traffic

density in the following Sec. 5.3.2).

5.3.2 Lane-Changing Rate as Function of the Traffic Density

Let us now investigate the lane-changing rate as a function of the traffic density for open

road systems. A method to locally measure the lane-changing rate and the traffic density

in a microscopic simulation is as follows: The road is divided into subsections, e.g., of
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(c) Symmetric lane-changing rules
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Figure 5.7: Lane-changing rates for symmetric lane-changing rules (left) and asymmetric ones

(right) as a function of traffic density. In the simulations, the politeness parameter has been either

set to p = 0 (top) or p = 1 (bottom). Furthermore, the diagrams show the lane-changing rates

measured in two 1 km long road sections of the 10 km long road section. As shown in the diagrams,

the maximum lane-changing rate is mainly determined by the politeness factor. Furthermore, an

on-ramp at location x = 7.5 km with a merging zone of 300m increases the lane-changes locally.

length ∆x = 1 km and time is divided into time intervals of duration ∆t = 1 min. For

each spatiotemporal element [∆x∆t] obtained in this way, the number n of lane changes

and the average density ρ is determined. The lane-changing rate is then given by

r(ρ) =
n

∆x∆t
. (5.8)

Finally, we average over all lane-changing rates belonging to the same density interval

[ρ, ρ + ∆ρ]. Taking different values of ∆x, ∆t or ∆ρ did not changed the results qualita-

tively.

We have run multiple simulations with inflows varying from 100 vehicles/h/lane up to 1800

vehicles/h/lane and a constant ramp flow of Qrmp = 500 vehicles/h (for the simulation

setup, see Sec. 5.3.1). The lane-changing rates on two road sections for politeness factors

of p = 0 and p = 1 and for symmetric and asymmetric lane-changing rules are shown in

Fig. 5.7. Our results are as follows:
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• The lane-changing rates increase for traffic densities 1 km/lane < ρ < 10/km/lane. A

more detailed analysis reveals a quadratic dependency for sufficiently small densities

(see Sec. 5.3.3 below).

• The maximum lane-changing rates are obtained for intermediate densities. The

maximum is located between 10/km/lane (for p = 1 and asymmetric rules) and

15/km/lane (in the other cases).

• The peak value strongly depends on the value of the politeness parameter. For p = 0,

the maximum lane-changing rate is about 1100 vehicles/h/km for symmetric rules

and 1400/h/km for asymmetric ones. For p = 1, the maximum lane-changing rate

is only about 600 vehicles/h/km for symmetric rules and 450/h/km for asymmetric

ones. Further simulations show that already a small positive value p > 0 reduces

the maximum rate of lane changes significantly.

• For a further increase of the traffic density, the lane-changing rates decrease, because

velocity differences between neighboring lanes are reduced (‘synchronized traffic’, see

below). For density values around 30 vehicles/km/lane, the lane-changing rates on

the homogeneous road section around x = 5.5 km are negligible, because changing

lanes is not profitable or possible anymore due to a lack of suitable gaps. This

observation could be attributed to the ‘moving like a solid block’ effect proposed in

Ref. [35].

• The curves of the lane-changing rates measured at the homogeneous road section

around x = 5.5 km and the section at x = 7.5 km (which includes the merging area)

show similar shapes. However, due to the vehicles that merge from the on-ramp

to the freeway, the lane-changing rate is systematically shifted to higher values (cf.

Sec. 5.3.1).

• Even at high traffic densities, the lane-changing rate does not drop to zero. There

are still about 100–200 lane changes per hour and kilometer.

The politeness parameter p is the most important parameter determining the lane-

changing rate. Let us, nevertheless, discuss the influence of the other MOBIL parameters

as well. The lane-changing threshold ∆ath influences the peak of the curve weakly, but

it does not change r(ρ) qualitatively. For example, increasing ∆ath from 0.1 to 0.3 m/s2

reduces the maximum number of lane changes by approximately 100/h/km. Moreover,

the influence of the maximum safe deceleration bsafe is negligible within a reasonable range

of braking accelerations from −9 m/s2 to −b, as the IDM braking strategy limits braking

decelerations to the ‘comfortable deceleration’ b in nearly all situations (cf. Sec. 2.2).

Let us finally discuss the mean velocities as a function of the traffic density for the lane-

changing rates shown in Fig. 5.7. We have implemented ‘virtual’ cross sections in order
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Figure 5.8: Lane-resolved 1-minute velocity averages of simulated detector data at the cross section

x = 5km for (a) symmetric and (b) asymmetric MOBIL rules. The simulation results correspond

to the lane-changing rates shown in Fig. 5.7 for politeness parameters of p = 0 and p = 1.

to aggregate the data over 1-minute intervals in order to mimic real-world double-loop

detector measurements. For each sample interval, we have recorded the lane-resolved

traffic flow Qi and determined the arithmetic velocity averages Vi. The density ρ was

calculated via the hydrodynamic relation Q = ρV from the lane-averaged quantities Q =
∑L

i=1 Qi and V =
∑L

i=1(QiVi)/Q for the simulated road consisting of L = 2 lanes. Finally,

we have averaged over all data belonging to the same density class (of class width ∆ρ =

2 /km/lane).

Figure 5.8 shows the velocities of the left and the right lane measured with a detector

located at x = 5 km for symmetric and asymmetric lane-changing rules and for politeness

parameters of p = 0 and p = 1. In our simulations, traffic is always free with means

speeds of about V ≥ 65 km/h. For symmetric lane-changing rules, the velocity is pri-

marily synchronized in all lanes for all densities due to the lack of any lane preference,

see Fig. 5.8(a). In contrast, the difference in the average velocities in different lanes (see

Fig. 5.8b) is a consequence of the asymmetric lane-changing rules, i.e., of the parameter

∆abias. The initially equally distributed trucks are mostly found on the right-most lane.

The separation results in a different velocity-density relation for the fast (left) lane and the

slow (right) lane, as shown in Fig. 5.8(b). For both lane-changing scenarios, the velocity

differences decrease with growing traffic density.

The influence of the politeness factor p is as follows:

• For symmetric lane-changing behavior, the ‘altruistic’ lane-changing behavior cor-

responding to p = 1 increases the mean speed in both lanes for traffic densities of

about ρ ≤ 20 /km/lane. Therefore, the suppression of disadvantageous lane changes

for the neighbors [see Eq. (5.4)] improves the overall traffic performance. In contrast,

an ‘egoistic’ lane-changing behavior (p = 0) results in higher average travel times.

95



5 The Lane-Changing Model MOBIL

• For asymmetric MOBIL rules, the lane-changing behavior corresponding to p = 1

leads to more pronounced velocity differences between the lanes. While the speed

in the passing (left) lane is higher than in the case p = 0, the speed in the slow

(right) lane is reduced. Notice that these variations only occur for intermediate

traffic densities, i.e., when lane changes lead to interactions between vehicles in

neighboring lanes. When a driver-vehicle unit considers to change to the fast lane,

the disadvantage of the follower in the target lane is included (and weighted) by the

politeness factor. An unselfish driver, therefore, stays in the slower lane to avoid the

perturbation of the faster vehicles in the left lane.

• However, for symmetric and asymmetric MOBIL rules, the differences between the

lane-changing behavior for different settings of the politeness parameter p disappear

for densities ρ > 20 /km/lane. This result is consistent with the measured lane-

changing rate shown in Fig. 5.7, as the number of lane changes decreases with growing

density due to a lack of suitable gaps, independent of the politeness value.

5.3.3 Lane-Changing Rate for Small Traffic Densities

Let us study the lane-changing rate for sufficiently small densities in more detail. In light

traffic, changing lanes in order to pass slower vehicles ahead is possible without delays in

nearly all cases. Therefore, we are able to derive an analytical expression for the resulting

lane-changing rate which also allows for a check of the software implementation. For this,

we assume a homogeneous road section with n lanes. The overall density ρ is assumed to

be symmetrically distributed among the lanes and the velocity distribution is described

by the probability density f(v). Let us consider vehicles driving at a constant speed v

encountering slower vehicles driving at v′ < v. The (differential) rate for encountering

a vehicle within the velocity interval [v′, v′ + dv′] is given by the relative flow dQ′ =

(v − v′)ρf(v′)dv′. On average, only the fraction 1/n of this differential flow belongs to

vehicles on the same lane, thereby obstructing the vehicle driving at speed v and initiating

a lane change of this vehicle. Integrating over all velocities v′ < v leads to the following

average lane-changing frequency of cars driving at speed v:

w(v) =
1

n

v∫

0

dv′ (v − v′)ρf(v′). (5.9)
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The mean lane-changing rate R of an ensemble of vehicles is, therefore, given by the

expression

R = ρ 〈w〉 =
ρ2

n

∞∫

0

dv

v∫

0

dv′f(v)f(v′)(v − v′) (5.10)

=
ρ2

2n

∞∫

0

dv

∞∫

0

dv′f(v)f(v′)|v − v′| (5.11)

=
ρ2

2n
〈|v − v′|〉, (5.12)

where we have used the standard expression for the bivariate expectation value of indepen-

dent stochastic variables in the last step. In case of just two vehicle types with occurrence

frequencies p1 and p2 = 1 − p1 driving at constant speeds v1 and v2, respectively, the

expectation value can be estimated as 〈|v − v′|〉 = 2p1p2|v1 − v2|.

Let us now compare the theoretical lane-changing rate at a density ρ′ = ρ/n per lane,

R = nρ′2 p1p2 |v1 − v2|, (5.13)

to our simulations. The vehicles are initially distributed with regular distances and ran-

domly chosen lanes on a n = 2 or 3 lane road with periodic boundary conditions. The

changing threshold ∆ath is set to zero according to the simplifications made in the an-

alytical calculations. In Fig. 5.9, the simulation results for the averages and variations

are compared with the analytical curve from Eq. (5.13). For densities ρ < 3/km/lane,

the analytical expression describes the simulated lane-changing rate very accurately. For

ρ > 3/km/lane, the simulated lane-changing rate stays below the expected theoretical

curve, because the free traffic assumption becomes invalid. Since the density is approx-

imately homogeneous in space and time, these results are independent from the values

(∆x,∆t) used for the spatiotemporal measurement of the lane-changing rate.

5.4 Conclusions and Outlook

Lane-changing models are an important component of any microscopic traffic simulation

software. Most of the published and implemented lane-changing models follow a rule-

based approach with different gap-acceptance conditions and, consequently, different lane-

changing behaviors in different situations. Due to the variety of possible driving conditions

associated with discretionary and mandatory lane changes, this approach often tends to

lead to complex models with many parameters.

In this chapter, we have presented the general concept MOBIL defining lane-changing
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Figure 5.9: Lane-changing rates on a 2- or 3-lane freeway under free-flow conditions according

to simulations (symbols) and analytical calculations (solid lines). Equation (5.13) reproduces the

simulation data within the error bands for densities ρ < 3/km/lane, while the deviation from the

free-traffic assumptions becomes significant for higher densities: The simulated lane-changing rate

is lower than the analytic expression, because the assumption that an immediate lane change would

always be possible breaks down.

models for a broad class of car-following models. The basic idea of MOBIL is to measure

both the attractiveness of a given lane, i.e., its utility and the risk associated with lane

changes in terms of accelerations. This means, both the incentive criterion and safety

constraints can be expressed in terms of the acceleration function of the underlying car-

following model. This allows for an efficient and compact formulation of the lane-changing

model with a small number of additional parameters. As a consequence, the properties

of the car-following model, e.g., any dependence on relative velocities or the exclusion of

collisions are transferred to the lane-changing behavior. Moreover, the model is able to

describe mandatory and discretionary lane changes as well as symmetric and asymmetric

lane changes in a unified and consistent way. By virtue of the acceleration-based decisions,

the lane changes are more anticipative than those of gap-based models. For example,

if a leading vehicle on a possible target lane is faster than the own leader, MOBIL in

combination with the IDM may suggest a lane change even if the lead gap on the target

lane is smaller than that on the actual lane. In a way, MOBIL anticipates that the gap

will be larger in the future.

As a novel feature, the proposed model takes into account other drivers via a politeness

factor p. The politeness factor characterizes the degree of (passive) cooperativeness among

drivers. That is, a driver takes a lane-changing decision by considering its expected effects

on other drivers. More specifically, even advantageous lane changes will not be performed

if the personal advantage is smaller than the disadvantage to the traffic environment,

multiplied by p. Furthermore, a ‘pushy’ driver is able to initiate a lane change of his or

her leader which is a commonly observed driving behavior in countries with asymmetric
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lane-changing rules and dedicated passing lanes (cf. Fig. 5.4).

The MOBIL concept has only a few parameters and each parameter is associated with

an intuitive meaning. The safety criterion is simply described by a critical acceleration

threshold bsafe. The threshold ∆ath prevents lane-changing in case of marginal advan-

tages. For the asymmetric incentive criterion, an additional bias parameter ∆abias differ-

entiates between default and passing lanes. The optional politeness parameter p weights

the accelerations and decelerations of the vehicles directly affected by a lane change. The

parameters bsafe, ∆ath and ∆abias are given in units of the acceleration and are directly

measurable quantities. Moreover, the politeness factor could also be empirically deter-

mined and measured by comparing the situation before and after the lane change of the

affected vehicles.9 By means of simulations, we have investigated the lane-changing rate

of an open road system with an on-ramp in combination with the Intelligent Driver Model

(IDM), leading to deterministic lane-changing behavior. The lane-changing rate is mainly

determined by the politeness factor p, but depends also on the considered location of the

road section. As shown in the simulations, the lane-changing rate is locally increased at

the location of a road inhomogeneity which is related to mandatory lane changes.

We emphasize that MOBIL is meant to represent only the last ‘operational’ decision,

whether to immediately perform a lane change or not. In reality, a lane-changing decision

also includes strategical and tactical aspects in preparation for this final step which are

particularly relevant for congested traffic and for mandatory lane changes. For example,

tactical behavior may involve accelerations (or decelerations) of the own vehicle or of

vehicles in the target lane in preparation for an expected lane change. Such behavior

corresponds to an active cooperation between the drivers.

Finally, extensions of the proposed acceleration-based concept to other decision processes

that occur in traffic network simulation software are possible as well. For example, when

approaching a traffic light that switches from green to yellow, one has to decide whether

to stop in front of the signal or to pass it with unchanged speed. In the framework of

MOBIL, the ‘stop’ decision will be based on the safe braking deceleration bsafe. Similar

considerations apply when deciding whether it is safe enough to cross an unsignalized

intersection [36], to yield right of way when turning or to start an overtaking maneuver

on the opposite lane of a two-way rural road.

9Obviously, an empirical study of lane changes in order to calibrate and validate the model would be the
next step. This could, in principle, be done with highly resolved trajectory data [48, 154].
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6 Microscopic Multi-Lane Traffic Simulator

So far, we have proposed models that describe the longitudinal movement and the lane-

changing decisions of individual driver-vehicle units. Let us now describe the software

framework that integrates these components into a microscopic multi-lane simulator for

freeway traffic.1 Note that the programming of own simulation tools provides the basis for

scientific research, because it allows for full control and dedicated evaluation of the models.

For example, in Part II we will study the impact of future driver assistance systems that

are based on a traffic-state dependent driving strategy. The technical implementation

corresponds to a car-following model with time-dependent parameters which requires an

integrated simulation approach. Furthermore, we will integrate a module for inter-vehicle

communication in order to combine vehicular traffic with new communication applications.

Note that commercial traffic simulation software such as PTV-VissimTM [144], AimsunTM

[141] or ParamicsTM [142] is not yet suited to tackle these current research questions.

In particular, we present a microscopic multi-lane traffic simulator that has been imple-

mented in JavaTM with a graphical user interface (GUI) and graphical animation. The

simulator makes use of the object-oriented programming paradigm by representing and

abstracting functional units as classes. Examples for classes are, e.g., the longitudinal

(acceleration) model, the lane-changing decision model, the ACC model, the graphical

representation of a vehicle, etc. Furthermore, each object as a representative of a class

includes data elements allowing for the consideration of individual characteristics (such

as driving ‘conservatively’ or ‘aggressively’) and vehicle types (such as cars and trucks, or

equipment with ACC or not, etc.).

The structure of the microscopic traffic simulator is shown in Fig. 6.1. The input data

layer defines the simulation settings which can be provided by input files encoded in XML

(extensible markup language), by the command line or via the GUI. In Sec. 6.1, we will

discuss these input channels in more detail. The main simulation loop is organized by the

‘Simulation Controller’ which keeps track of the program operations and user actions. This

central control unit calls the different model classes such as the road-section object, the

container class structure of driver-vehicle units, the vehicle generator at the boundaries

1As it is customary in the field of software development, the presented ‘general purpose’ simulation
tool is the result of team work over several years and has been developed in tight collaboration with
Dr. Martin Treiber, who has started this project. Furthermore, only the general concept can be outlined
here.
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(see Sec. 6.2), etc. The numerical integration of the underlying locally coupled system

of nonlinear differential equations is executed in the ‘SimCore’ class (see Sec. 6.2 for the

explicit integration scheme). The simulation results can be visualized by 2D and 3D

computer graphics on the screen or as a video. Furthermore, they can be written to data

files (see Sec. 6.4).

6.1 Input Data for a Simulation Project

In order to specify a simulation project, some input data are required: The properties

of the considered road section, the parameters of the used longitudinal models, the lane-

changing parameters, the heterogeneity of the driver-vehicle units representing the variety

of vehicles and drivers, options for a user-specified output, etc. In our traffic simulator,

input parameters and data can be provided by the following channels:

• The graphical user interface (GUI) allows for an interactive control of a traffic simu-

lation. Changes in the parameters by the user directly influence the simulation run.

The screenshots in Fig. 6.2 on page 104 show examples of interactive control panels.

• The command line is read when starting the program. When calling the simulation

program from an automated shell script, the command line easily allows for repeated

runs with varying simulation parameters or projects as described in the following.

• A simulation project can be completely controlled by an input file which is read

by a XML parser. A part of a XML project specification is shown in Fig. 6.3.

Additionally, time-dependent boundary conditions (see Sec. 6.3) can be provided by

separate input files.

6.2 Numerical Integration Scheme

Microscopic traffic flow models describe the motion of individual driver-vehicle units α.

This thesis focuses on the subclass of time-continuous microscopic models where the ac-

celeration dvα/dt of a vehicle α is of the form

dvα

dt
= f(vα, sαβ1 , ∆vαβ1 , . . . , sαβN

, ∆vαβN
). (6.1)

This means the acceleration function f of a vehicle α depends on the own velocity vα and

on the distances sαβ and velocity differences ∆vαβ to a given number of preceding vehicles

β1, . . . , βN . For example, the Human Driver Model (HDM) proposed in Chap. 4 depends
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Figure 6.1: Illustration of the structure of the microscopic traffic simulator. The input data

defining a simulation setting can be provided by XML-based data files, the command line or

the graphical user interface (GUI). The main simulation loop is organized by the ‘Simulation

Controller’, which controls the different program classes, the numerical integrator (‘SimCore’), the

graphical visualization (‘SimViewer’), and the output classes corresponding to measurements of

several microscopic and macroscopic quantities. The latter are written into file and may also be

plotted on the screen. Furthermore, the single vehicles can be directly graphically visualized on

the screen or, alternatively, recorded as a video stream.

on multiple leading vehicles βi. The Intelligent Driver Model (IDM) [123] defined by (2.1)

in Chap. 2 belongs to the subclass of car-following models which take into account only
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Figure 6.2: Two examples of GUI control panels for the driving strategy of ACC-equipped vehicles

(left) and the general simulation parameters and display options (right).

the direct leader resulting in expressions of the form

dvα

dt
= f (sα, vα, ∆vα) , (6.2)

i.e., the acceleration only depends on the own velocity vα, the gap sα, and the velocity

difference (approaching rate) ∆vα = vα − vα−1 to the leading vehicle (α− 1). Notice that

the models described by (6.1) or (6.2) are instantaneous in time and uniquely defined by

the acceleration function f . We assume that the vehicle indices α are ordered such that

(α − 1) denotes the preceding vehicle throughout the thesis.

Together with the gap sα(t) = xα−1(t)− xα(t)− lα−1 and the general equation of motion,

dxα

dt
= vα, (6.3)

Eq. (6.2) represents a (locally) coupled system of ordinary differential equations (ODEs) for

the positions xα and velocities vα of all vehicles. As the considered acceleration functions

f are nonlinear, we have to solve the set of ODEs by means of numerical integration with

given initial values. In the context of car-following models, it is natural to use an explicit

scheme assuming constant accelerations within each update time interval ∆t. This leads

to the explicit numerical update rules

vα(t + ∆t) = vα(t) + v̇α(t)∆t,

xα(t + ∆t) = xα(t) + vα(t)∆t + 1
2 v̇α(t)(∆t)2,

(6.4)

where v̇α(t) is an abbreviation for f (sα(t), vα(t), ∆vα(t)). For ∆t → 0, this scheme locally
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<?xml version="1.0" encoding="ISO-8859-1"?>

<JSIMULATION_PROJECT>

<GENERAL with_defined_seed="true" crash_test="true" with_graph_output="true">

<WINDOW_SIZE width="800" height="600" />

<VISUALIZATION with_two_mainroads="false" with_2d="true" with_3d="true"/>

</GENERAL>

<SCENARIO choiceScenario="1" roadlength_m="5000" lanes="3" is_ringroad="false">

<INFLOW_MAIN file="onramp.BCup"/>

<INFLOW_RAMP init_q_invh="750" />

</SCENARIO>

<HETEROGEN perc_vla="0" perc_truck="0.0" />

<MODELS b_max_ms2="9">

<CARS length_m="4" vmax_kmh="200" >

<IDM v0_kmh="120" T="1.2" s0="2" a="1.5" b="2.0"/>

</CARS>

</MODELS>

<DETECTORS t_sample_s="60" with_aggr_data="true" rel_positions="0.7, 0.9"/>

</JSIMULATION_PROJECT>

Figure 6.3: Clipping of simulation project specification encoded in XML (extensible markup lan-

guage).

converges to the exact solution of (6.2) with consistency order 1 for the velocities (‘Euler

update’, cf. Ref. [94]) and consistency order 2 for the positions (‘modified Euler update’)

with respect to the L2-norm.2 Because of the intuitive meaning of this update procedure

in the context of traffic, the update rule (6.4) or similar rules are sometimes considered

as part of the model itself rather than as a numerical approximation. Popular examples

of such coupled map models include the Newell model [87] and the Gipps model [26]. A

typical update time interval ∆t for the IDM is between 0.1 and 0.2 s. Nevertheless, the

IDM is approximately numerically stable up to an update interval of ∆t ≈ T/2, i.e., half

of the time gap parameter.

An explicit reaction time T ′ is incorporated in a time-continuous model of the type given by

Eq. (6.2) by evaluating the right-hand side at a previous time t−T ′. In this way, one obtains

a coupled set of delay-differential equations (DDEs). The numerical integration according

to (6.4) now depends on both, the reaction time and the update time interval. If the

reaction time is a multiple of the update time interval, i.e., T ′ = n∆t, it is straightforward

to generalize equations (6.4) by calculating all terms on the right-hand sides with the

2A time-continuous traffic model is mathematically consistent if a unique local solution exists and if a
numerical update scheme exists whose solution locally converges to this solution, when the update time
interval goes to zero. It has the consistency order q if ||ǫ|| = O(∆tq) for ∆t → 0 where ǫ denotes the
deviation of the numerical solution for xα or vα with respect to the exact solution, and || · || is some
functional norm such as the L2-Norm.
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velocities and positions n time steps in the past. To this end, we save the past update

steps in form of a ‘cyclic buffer’. If T ′ is not a multiple of the update time interval ∆t, we

propose a linear interpolation according to

x(t − T ′) = βxt−n−1 + (1 − β)xt−n, (6.5)

where x denotes any quantity on the right-hand side of Eq. (6.2) such as sα, vα or ∆vα.

Furthermore, xt−n denotes this quantity taken n time steps before the actual step t (cf.

Sec. 4.1.1). Here, n is the integer part of T ′/∆t, and the weight factor of the linear

interpolation is given by β = T ′/∆t − n. As initial conditions, DDEs require values for

the dependent variables over a whole time interval T ′.

6.3 Boundary and Initial Conditions

The mathematical problem is not yet completely specified by the set of ODEs or DDEs.

In addition, certain boundary (and initial) conditions have to be satisfied. For our system

of driver-vehicle units, we distinguish two system classes:

• A closed system (a ring road) is defined by an initial value problem. The control

parameter is the homogeneous traffic density ρh which essentially determines the

long-term behavior of the system.

• For an open system, the inflow to the main road is the natural control parameter,

i.e., the inflow at the upstream boundary, where the vehicles are introduced into

the system with a given velocity. The actual implementation, however, is more

complicated. For example, one has to satisfy the traffic demand at the upstream

boundary without generating an artificial ‘dynamic’ bottleneck or causing collisions

of entering vehicles. Furthermore, there exist situations where downstream boundary

conditions become relevant as well, e.g., when introducing a stop-and-go wave. The

details of the initial conditions are not relevant unless they lead to an immediate

breakdown of traffic flow.

Note that realistic traffic systems are represented by open systems rather than closed

systems. For example, road inhomogeneities like on-ramps or off-ramps are, by definition,

modeled as sources or sinks. In most simulations, the inflow at the upstream boundary is

a time-dependent function Q(t), for example when simulating a rush-hour scenario with

an increasing traffic demand. Additionally, information about the heterogeneity of the

traffic flow, e.g., the percentage of ‘trucks’ or vehicles equipped with ACC systems, needs

to be considered as well. In order to limit the amount of necessary input data, we evaluate

the given quantities at a given simulation time by interpolation.
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6.4 Definition and Measurement of Traffic-Related Quantities

In a microscopic traffic simulation, the positions and velocities of all vehicles are known

in each time step. Therefore, several microscopic and (aggregated) macroscopic traffic-

related quantities can be gathered and either displayed in real-time on the screen or written

into data files. In the following, we summarize some common traffic quantities and refer

to some examples for matters of illustration. Note that the following quantities are also

measurable in reality.

Floating car data: A single vehicle in a microscopic simulation can be considered as a

‘floating car’ which gathers information about its own trajectory and, additionally, data of

its direct environment such as the distance to the leading vehicle, etc. In Chap. 3, empirical

and simulated time-series of floating car data (FCD) are extensively investigated, see, e.g.,

Fig. 3.5 on page 44.

Travel times: A common method used to estimate the current travel time is by summing

up the travel time derived from speed measurements at different sections of the road

simultaneously. The instantaneous travel time calculation assumes that present travel

conditions would prevail for vehicles entering the road section at this moment. We define

the instantaneous travel time of a road segment [xstart, xend] by

τinst(t) =

xend∫

xstart

dx

V (x, t)
. (6.6)

In a microscopic simulation, the average velocity V (x, t) can be approximated from the

velocities vi and the integral by the sum over the gaps ∆xα = xα−1 − xα of all vehicles α

according to

τinst(t) =
∑

α

∆xα(t)

vα(t)
. (6.7)

Moreover, the cumulative travel time is simply the vehicle number on the simulated section

integrated over time. Note that τinst(t) mainly reflects the perspective of the drivers,

while the cumulative travel time is a performance measure of the overall system that can

be associated with the economic costs of traffic jams. Furthermore, the travel time is

the most important variable of an user-oriented measure of the quality of service [31].

Examples for both quantities can be found in Fig. 8.7 on page 132.

Detector data: For a direct comparison with empirical double-loop detector data in our

simulations, ‘virtual detectors’ mimic the real-world measurement process. At a given
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6 Microscopic Multi-Lane Traffic Simulator

cross-section, passage times and velocities of crossing vehicles are recorded (single-vehicle

detector data) or the data are aggregated over a given sampling interval (typically 1 min).

Data from virtual detector loops can be found, e.g., in Fig. 8.8 on page 133.

Spatiotemporal data: The spatiotemporal density ρ(x, t) can be obtained from the mi-

croscopic quantities of the vehicles α by the generalized micro-macro relationship (2.12)

ρ

(

xα +
lα−1 + sα

2

)

=
1

lα + sα
. (6.8)

While xα denotes the vehicle position, sα represents the spacing to the leader, and lα the

lengths of the vehicles. Moreover, the spatiotemporal velocity field V (x, t) is analogously

determined from the vehicle speeds. Note that the spatiotemporal dynamics can also be

reconstructed from cross-sectional data by interpolation [120].

6.5 Graphical Visualization

The microscopic simulation of the vehicular traffic dynamics can be intuitively presented

by computer graphics. The animated visualization of vehicle trajectories in the course of

time demonstrate both, the individual interactions and the resulting collective dynamics.

In particular, the graphical visualization turns out to be an important tool when developing

and testing lane-changing models for their plausibility, because lane-changing maneuvers

can be rather complex (cf. Chap. 5).3 Furthermore, computer animations have become

an important tool for a fast and intuitive understanding of the system dynamics within

the project Invent (App. B), for example, the knowledge transfer of scientific results by

means of visualization was very helpful and efficient.

Our traffic simulator offers a fast and dynamic visualization in 2D and 3D. The graphics

engine has been developed by M. Treiber based on the Advanced Window ToolkitTM

provided by Sun MicrosystemsTM. As an example for the 2D mode, Fig. 6.4 shows

in parallel two simulation scenarios (with and without ACC equipped vehicles) for mat-

ters of direct comparison.4 Notice that the instantaneous simulation of two independent

simulation instances will be used to simulate inter-vehicle communication, where ‘trans-

verse’ message propagation requires vehicles traveling in the opposite driving direction

(see Sec. 8.4 on page 138). Furthermore, the 3D mode offers two observer perspectives:

Figure 6.5 illustrates the ‘cockpit perspective’ of a driving vehicle on the road. A system

3Moreover, some aspects of the proposed lane-changing model MOBIL in Chap. 5 (such as the ‘dynamic
pressure’ exerted by ‘pushy’ drivers on slower leaders in the fast lane) can be directly observed by
visualization.

4Interactive elements such as the ‘driving strategy matrix’ (cf. Sec. 7.1) allow for a direct evaluation of
parameter changes of the vehicles equipped with ACC systems.
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6.5 Graphical Visualization

Figure 6.4: Screenshot of our traffic simulator as used in the Invent project [150] with two

independent simulation runs for a direct comparison and evaluation of the applied ACC strategy.

at rest allows for an observation from an arbitrary spatial perspective as illustrated in

Fig. 8.12 on page 139.

Figure 6.5: Example for the 3D animation of the driver perspective. Two independent driving

directions allow for the simulation of inter-vehicle communication. Notice that the Coffeemeter

invented by M. Treiber visualizes the acceleration and the jerk (i.e., the changes of all acceleration

with time) which are difficult to visualize by other means. Figure 8.12 on page 139 illustrates the

observer perspective.
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Traffic-Adaptive Cruise Control and its
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7 Model of a Traffic-Adaptive Cruise Control System

In this chapter, we generalize the concept of adaptive cruise control (ACC) (cf. Sec. 1.1)

to a traffic assistance system, in which vehicles automatically adapt the ACC parameters

to improve the traffic flow and road capacity, thereby decreasing traffic congestion while

retaining driving comfort. In order to resolve possible conflicts between the objectives

of comfort and road capacity, we propose a driving strategy that adapts the ACC driving

characteristics to the local traffic situation. In contrast to conventional ACC systems,

the driving behavior of the proposed traffic assistance system, i.e., the acceleration, is

determined by a two-step process:

1. The operational level consists in responding to changes of the ACC input quantities

s (net distance to the preceding vehicle), v (vehicle’s own velocity) and ∆v (velocity

difference). The time scale is of the order of seconds and the spatial range is limited

to the immediate vehicle ahead.

2. On the strategic level, the traffic situation is determined locally and the driving style

is adapted accordingly by changing a number of ACC parameters. The parameter

settings related to the detected traffic state change typically on time scales of minutes

and in a range of typically a few hundred meters. This is analogous to manual

changes of the desired velocity or the time gap in conventional ACC systems which,

of course, are possible in the proposed system as well.

Specifically, we consider a finite set of five traffic situations: (i) Moving in free traffic, (ii)

approaching an upstream congestion front, (iii) moving in congested traffic, (iv) leaving

the downstream congestion front and (v) passing infrastructural bottleneck sections (such

as work zones or intersections). These traffic situations have to be detected autonomously

by each ACC-equipped vehicle. A detection algorithm determines which of the five traffic

situations mentioned above applies best to the actual traffic situation. Since autonomous

detection alone is only possible with delays, we also consider supplementing the local

information by means of roadside-to-car and inter-vehicle communication between suitably

equipped vehicles [102, 139, 103].

The proposed traffic assistance system consists of several system components as displayed

in Fig. 7.1: The main operational layer is the ACC system, calculating the acceleration

v̇(t) in response to the input sensor data. The novel feature of the proposed system is
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Figure 7.1: Overview of the components of the proposed traffic-adaptive cruise control system. The

operational level controlling the dynamics on short time scales corresponds to conventional ACC

systems. The strategic layer containing the novel elements of our concept controls the dynamics on

time scales of the order of minutes. It is coupled to the operational level via changes of the ACC

model parameters, e.g., T (time gap), a (maximum acceleration) and b (comfortable deceleration).

Additionally, the driver is able to customize the driving characteristics by setting the desired

velocity v0 and the time gap T as in conventional ACC systems. Therefore, changes of T by the

strategic level are specified relative to the driver settings.

the strategic layer which implements changes in the driving style in response to the local

traffic situation by changing a number of parameters of the ACC system. An algorithm

automatically detects the local traffic situation in real time, based on local information.

The driving strategy matrix associates the driving characteristics, i.e., the parameters of

the ACC controller, with the local traffic conditions classified in a discrete set of five ‘traffic

conditions’.

In the following sections, the system components of the proposed traffic-adaptive ACC

system will be discussed in more detail. In Sec. 7.1, a general concept for a driving strategy

will be introduced that is capable of improving the traffic flow efficiency, while retaining

the comfort and safety for the driver. In Sec. 7.2, such a strategy will be implemented, i.e.,

the elements of the driving strategy in terms of the strategy matrix will be specified. In

Sec. 7.3, the detection model for determining the traffic situation based on the evaluation of
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the locally available floating car data will be described. Finally, the additional use of non-

local information sources such as inter-vehicle and infrastructure-to-car communication

for an improved detection of the local traffic state will be discussed (Sec. 7.4).

7.1 Considerations for a Comfortable and Efficient Driving

Strategy

The design of an ACC-based traffic assistance system is subject to several, partly con-

tradictory, objectives. On the one hand, the resulting driving behavior must be safe and

comfortable for the driver. This implies comparatively large gaps and low accelerations.

On the other hand, the performance of traffic flow is enhanced by smaller time gaps T and

larger accelerations. Moreover, simulations show that higher accelerations increase both

the traffic stability and the dynamic bottleneck capacity, i.e., the outflow from congested

traffic as will be shown in Secs. 9.1 and 9.2. Our approach to solve this conflict of goals is

based on the following observations:

• Most traffic flow breakdowns are initiated at some sort of road inhomogeneities

or infrastructure-based bottlenecks such as on-ramps, off-ramps or sections of road

works. For example, Schönhof et al. [101, 72] have observed these characteristics

by investigating 245 breakdowns of traffic flow at several different bottlenecks of the

German freeway A5 near Frankfurt/Main.

• An effective measure to avoid or delay traffic breakdowns is to homogenize the traffic

flow. To this end, large velocity differences are to be avoided.

• Once a traffic breakdown has occurred, the further dynamics of the resulting con-

gestion pattern is uniquely determined by the traffic demand (which is outside the

scope of this investigation) and by the average driving style in the immediate neigh-

borhood of the downstream congestion front [18]. In many cases, the downstream

front is fixed and located near a bottleneck, as found in empirical investigations

[101, 51, 53, 54, 55].

• Traffic safety is (indirectly) increased by reducing the spatial velocity gradient at the

upstream front of traffic congestion, thereby reducing the risk of rear-end collisions.

In the context of the ACC-based traffic assistance system, we make use of these observa-

tions by only temporarily changing the comfortable settings of the ACC system in specific

traffic situations. The situations in which this is necessary have to be determined au-

tonomously by the equipped vehicle. To this end, we propose the following discrete set of

five traffic states and the corresponding actions:
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1. Free traffic: This is the default situation in which the ACC characteristics cor-

respond to ‘conventional’ ACC systems. The ACC settings are determined solely

by the maximum individual driving comfort. Since each driver can set his or her

own parameters for the time gap and the desired velocity, this may lead to different

settings of the ACC systems.

2. Upstream jam front: Here, the objective is to increase safety by reducing velocity

gradients. When compared with the default situation, this implies earlier braking

when approaching slow vehicles.

3. Congested traffic: Since drivers cannot influence the development of traffic con-

gestion in the bulk of a traffic jam, the ACC settings are reverted to their default

values.

4. Downstream jam front: In order to increase the dynamic bottleneck capacity,

accelerations are increased and time gaps are temporarily decreased. Note that this

handling rule is analogous to the driving behavior at a traffic light which switches

from red to green: For a high discharge rate from the queue, it is necessary that the

drivers are attentive and accelerate as quickly as possible.

5. Bottleneck sections: Here, the objective is to locally increase the capacity, i.e.,

to dynamically ‘fill the capacity gap’. This requires a temporary reduction of the

time gap which can be associated with an attentive driving behavior while passing

a bottleneck section.

Note that the operational ACC layer always assures a safe approaching process regardless

of the ACC settings for a certain detected traffic state. It is to emphasize that the total

fraction of time periods during which the ACC settings deviate from the default state

is usually only a few percent. Nevertheless, we will show in the Chaps. 8 and 9 that

even a small percentage of equipped vehicles driving according to the above ACC strategy

substantially decreases the size and duration of congestion and, thus, reduces the travel

times in a relevant way.

Figure 7.2 illustrates typical sequences of these five traffic states. In free traffic conditions,

the ‘bottleneck state’ is activated when passing a (stationary) bottleneck, e.g., an on-ramp.

When traveling through congested traffic, the drivers initially experience the ‘upstream

front’ (the tail of the queue). Then, they drive through ‘congested traffic’ conditions until

they reach the head of the queue which corresponds to the ‘downstream traffic state’.
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Figure 7.2: Typical sequences of traffic states. Top: The ‘free traffic state’ is the default under

free traffic conditions. The ‘bottleneck state’ is activated when passing infrastructural bottleneck

sections such as construction sites or intersections. Bottom: When traveling through congested

traffic, drivers typically experience the sequence ‘upstream jam front’ → ‘congested traffic’ →
‘downstream jam front’.

7.2 Implementation of the Traffic-Adaptive Cruise Control

For an implementation and simulation of the proposed system components, we require a

representation of ACC systems in terms of a microscopic traffic model. In order to be a

suitable and realistic candidate for simulating ACC systems, car-following models must

meet several criteria: First of all, the car-following dynamics must be collision-free, at

least, if this is physically possible. The dynamics should correspond to a natural and

smooth driving behavior. Adaptations to new traffic situations (for example, when the

preceeding vehicle brakes or another vehicle cuts in) should be performed without any

oscillations and as comfortable as safety allows. Each model parameter should have an

intuitive meaning and plausible values after calibration. Ideally, the parameter list should

include the desired velocity v0 and the desired time gap T which are preset by the driver in

typical ACC systems. These criteria are, e.g., met by the Intelligent Driver Model (IDM),

which has been introduced in Chap. 2. We will make use of this direct correspondence

for the simulation of ACC vehicles in the following chapters when representing idealized

ACC vehicles by the IDM.1

The implementation of the proposed traffic-adaptive driving strategy for the IDM is

straightforward because three of five IDM parameters directly correspond to different

aspects of the adaptation strategy: The acceleration parameter a gives an upper limit

for the acceleration v̇(t) of the ACC-controlled vehicle. Consequently, this parameter is

increased when leaving congestion, i.e., when the state ‘downstream front’ has been de-

tected. The comfortable deceleration b characterizes the deceleration when approaching

1Note that the modeling assumption is profoundly reasonable because a real-world implementation of an
ACC based on the IDM has recently been successfully implemented and presented by Volkswagen [66]
(see Sec. 1.1 of the Introduction as well).
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Traffic situation λT λa λb Driving behavior

Free traffic 1 1 1 Default/Comfort

Upstream front 1 1 0.7 Increased safety

Congested traffic 1 1 1 Default/Comfort

Bottleneck 0.7 1.5 1 Breakdown prevention

Downstream front 0.5 2 1 High dynamic capacity

Table 7.1: The driving strategy matrix summarizes the implementation of the ACC driving strat-

egy. Each of the traffic situations corresponds to a different set of ACC control parameters. We

represent the ACC driving characteristics by the time gap T , the maximum acceleration a and

the comfortable deceleration b which are model parameters of the Intelligent Driver Model (IDM).

λT , λa and λb are the multiplication factors in relation (7.1). For example, λT = 0.7 denotes a

reduction of the default safety time gap T by 30% in bottleneck situations.

slower or standing vehicles. Obviously, in order to be able to brake with lower deceler-

ations, one has to initiate the braking maneuver earlier. Since this smoothes upstream

fronts of congestion, the parameter b is decreased when the state ‘upstream front’ has been

detected. Notice that, irrespective of the value of b, the IDM deceleration (and thus the

deceleration of the ACC vehicle) exceeds b if this is necessary to avoid collisions. Finally,

the safety time gap T is decreased if one of the states ‘bottleneck’ or ‘downstream front’

is detected.

In order to be acceptable to drivers, the system parameters need to be changed in a way

that preserves the individual preferences of the different users of the system and also the

driving characteristics of different vehicle categories such as cars and trucks. In particular,

the preferred time gap T can be changed both by the driver and by the event-driven

automatic adaptation (cf. Fig. 7.1 on page 114). This can be fulfilled by formulating the

changes in terms of multiplication factors λa, λb and λT defined by the relations

a(s) = λ(s)
a a, b(s) = λ

(s)
b b, T (s) = λ

(s)
T T, (7.1)

where the superscripts (s) denote one of the five traffic situations, to which the respective

value applies. Furthermore, a, b and T denote the default values of the IDM parameters.

In summary, this implementation can be formulated in terms of a strategy matrix as

depicted in Table 7.1. Of course, all changes are subject to restrictions by legislation (e.g.,

the lower limit for T ) or by the vehicle type such as an upper limit for a, particularly for

trucks.
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7.3 Detection Algorithm for a Vehicle-Based Identification of

Traffic States

Let us now present a detection model for an automated, vehicle-based identification of the

local traffic situation as required for the proposed automated driving strategy. Our detec-

tion model is based on locally available velocity time series data of the own vehicle and the

leading car, whereas the velocity of the leader is measured by the radar sensor of the ACC

system. For the sake of simplicity we only focus on the vehicle’s own velocity, although

both velocities can be treated similarly and used to determine a weighted average.2 Due

to short-term fluctuations, the time series data require a smoothing in time in order to

reduce the level of variations that, if left unsmoothed, would trigger false transition signals

to other traffic states. In our traffic simulator used for the simulations in Chapters 8 and

9, we have used an exponential moving average (EMA) for a measured quantity x(t),

xEMA(t) =
1

τ

t∫

−∞

dt′e−(t−t′)/τ x(t′) (7.2)

with a relaxation time of τ = 5 s. The EMA allows for an efficient real-time update by

solving the corresponding ordinary differential equation

d

dt
xEMA =

x(t) − xEMA(t)

τ
. (7.3)

For an identification of the proposed five traffic states we define the following criteria: The

free traffic state is characterized by a sufficiently high average velocity, i.e.,

vEMA(t) > vfree, (7.4)

where vfree = 60 km/h is a typical threshold value. In contrast, the congested traffic state

is characterized by a low average velocity, namely

vEMA(t) < vcong, (7.5)

with a threshold of vcong = 40 km/h. The detection of an upstream or downstream jam

front relies on a change in speed compared to the exponentially averaged past of the speed.

Approaching an upstream jam front is therefore characterized by

v(t) − vEMA(t) < −∆vup, (7.6)

2The actual implementation is more elaborated and proprietary. It takes into account the available
information about the leader as well.

119



7 Model of a Traffic-Adaptive Cruise Control System

whereas a downstream front is identified by an acceleration period, i.e.,

v(t) − vEMA(t) > ∆vdown. (7.7)

Both thresholds are of the order of ∆vup = ∆vdown = 10 km/h.

The identification of the bottleneck state requires information about the infrastructure be-

cause bottlenecks are typically associated with spatial modifications in the freeway design

such as on-ramps, off-ramps, lane closures, gradients or construction sites (cf. Sec. 7.1).

We assume that this information is provided by a digital map database containing the po-

sition of a bottleneck (xbegin, xend) in combination with a positioning device (i.e., a receiver

using a satellite navigation system such as the Global Positioning System (GPS)) which

provides the actual vehicle position x(t) [23]. This information allows for an identification

of the bottleneck state by the spatial criteria3

x(t) > xbegin AND x(t) < xend, (7.8)

where xbegin is a position about 100 m upstream of the actual bottleneck and xend a location

somewhat downstream of its end (cf. Fig. 7.2).

It is possible that no criterion is fulfilled or, conversely, multiple criteria are met simultane-

ously. Therefore, we need a heuristic for the discrete choice problem. From our visualized

traffic simulations (cf. Chap. 6 and, e.g., Fig. 8.1 on page 124), we found that the following

decision order is the most appropriate one: downstream front → bottleneck → traffic jam

→ upstream front → free traffic → no change. This priority order also reflects the relevance

of the driving strategy associated with these traffic states for an efficient traffic flow. A

more sophisticated heuristic would consist in a dynamic adaptation of the thresholds used

in the criteria of Eqs. (7.4) to (7.7), e.g., based on non-local information via inter-vehicle

communication or vehicle-infrastructure communication as will be discussed in the next

section (cf. Fig. 7.3).

7.4 Inclusion of Inter-Vehicle and Infrastructure-to-Car

Communication

So far, the detection model is exclusively based on local information that is provided

autonomously by the vehicle’s own floating car data, the ACC radar sensor data and a

3In the case of very light traffic volumes, the adaptation to the ‘bottleneck state’ is not very effective
because there is no need for improvement in this case. Consequently, the information ‘near a bottleneck’
should no longer have priority over the information ‘free traffic’. The traffic-adaptive ACC should always
operate in the ‘free traffic’ regime in this case, i.e., it should reduce to a conventional ACC system with
fixed (user-defined) parameters.
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Figure 7.3: The autonomous detection and identification of the local traffic state is primarily based

on local data provided by the ACC radar sensor and the GPS positioning device in combination

with a digital map. Non-local data available from inter-vehicle communication or communication

with a stationary ‘roadside unit’ can improve the sensitivity and reliability of the detection model

(see also Fig. 8.12 for purpose of illustration).

satellite positioning device (cf. Fig. 7.3). Let us briefly discuss the principal limitations

of this approach. An autonomous detection in real-time according to Eqs. (7.4) to (7.7)

has to struggle with a time delay due to the exponential moving average that is of the

order of τ . In addition, a transition time between two states is necessary for the subjective

driving comfort (which is of the order of 5 s as well). Therefore, the resulting retardation

makes the autonomous adaptation to the traffic condition nearly ineffective if they are

not triggered by a known bottleneck (cf. Fig. 9.10 on page 155 for explicit simulations).

For example, the adaptation towards a smooth deceleration behavior when approaching a

dynamically propagating upstream congestion front requires the knowledge of its position

at an early stage in order to be able to switch to the new driving strategy in time. Even

more important, however, for the overall traffic performance is the activation of the traffic

state ‘downstream jam front’ when leaving the jam (cf. Sec. 9.2).

For a more advanced vehicle-based traffic state estimation, non-local information can be

additionally incorporated in order to improve the detection speed and quality. For exam-

ple, inter-vehicle communication (IVC) based on the Dedicated Short Range Communi-

cation (DRSC) standard [143] is a promising extension, providing up-to-date information

about dynamic up- and downstream fronts of congested traffic which cannot be estimated

without delay by local measurements. Furthermore, in the case of a temporary bottle-

neck such as an accident that is not listed in the digital map database, the information

about the location could be provided by communication with a stationary sender (so-called

‘roadside unit’, RSU) upstream of the bottleneck, corresponding to infrastructure-to-car
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communication. In a feasibility study in Sec. 8.4, we will demonstrate how traffic-related

messages can be transmitted by IVC and how the non-local information can be used for

an improved traffic-state detection. Note that we do not use IVC for a direct control of

ACC, but we merely incorporate additional, non-local information sources for an improved

traffic-state estimation.
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8 Integrated Simulation of Traffic-Adaptive Cruise

Control

Since large-scale field experiments are scarcely feasible, the effects of upcoming driver

assistance systems on the collective traffic dynamics are usually assessed by means of

traffic simulations. In particular, the microscopic modeling approach allows for a natural

representation of heterogeneous traffic and for a detailed specification of the parameters

and proportions of cars and trucks. In order to investigate the impact of the proposed

ACC-based traffic assistance system, we consider a mixed traffic flow consisting of vehicles

with activated ACC systems and manually controlled driver-vehicle units. For realistic

scenarios, only a small proportion of vehicles will be equipped with ACC systems.

The proposed components of the traffic-adaptive cruise control have been integrated in

the microscopic simulation framework (presented in Chap. 6) allowing for the following

‘simulation-in-the-loop’ method: Each vehicle equipped with ACC determines the local

traffic situation autonomously by evaluating its own floating car data (as a result of the

surrounding traffic). Depending on the detected traffic state, the individual ACC param-

eters T , a and b are changed by the multipliers of the driving strategy matrix listed in

Table 7.1 on page 118. Consequently, the automatic adaptation of the individual driving

style of single vehicles induces an intended feedback to the traffic dynamics of the overall

system which is our object of investigation. Figure 8.1 shows a screenshot of the traffic

simulation software.

As microscopic traffic model we use for both, equipped and non-equipped vehicles, the

Intelligent Driver Model (IDM) introduced in Chap. 2, with the parameter sets for cars

and trucks given in Table 8.1. Furthermore, lane-changing is a required ingredient for

realistic simulations of multi-lane freeway traffic and merging zones like on-ramps. Lane

changes have been simulated with the algorithm MOBIL (see Chap. 5) which is based on

the expected advantage in the new lane in terms of the gain in possible acceleration or

the avoidance of deceleration as calculated with the longitudinal driving model. Notice

that the ACC system only controls longitudinal driving. For this reason, we use the same

lane-changing parameters for ACC vehicles listed in Table 5.1 on page 90 (with politeness

factor p = 0.2).

The rest of this chapter is structured as follows: In Sec. 8.1 we start with an analysis of the

traffic models used to represent ACC and manually controlled vehicles and give a justifica-
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8 Integrated Simulation of Traffic-Adaptive Cruise Control

Figure 8.1: Screenshot of the traffic simulator, showing the on-ramp scenario studied in Sec. 8.2.

In our visualization, the current traffic state of each ACC vehicle is displayed by a changing vehicle

color allowing for a direct, visual assessment of the respective detected state. In contrast, non-

ACC vehicles are displayed in gray color. The parameters of the strategy matrix can be changed

interactively by the researcher in order to test new strategy matrices directly. For purpose of

illustration, two simulation runs are displayed. In the upper simulation, 100% of the vehicles are

equipped with the ACC-based traffic assistance system. The reference case without ACC equipped

vehicles displayed in the lower simulation window shows congested traffic at the bottleneck. In

both simulations, the same time-dependent upstream boundary conditions, i.e., identical inflows

have been used.

tion for modeling both types of vehicles with the same model. In the following subsections,

we evaluate the impact of the proportion of vehicles equipped with ACC systems on the

capacity and stability of traffic flow. We consider an on-ramp bottleneck (in Sec. 8.2) and

an uphill gradient bottleneck (Sec. 8.3). Furthermore, we apply different boundary condi-

tions to the open system and investigate different degrees of inter-driver heterogeneity. In

Sec. 8.4, we finally simulate event-driven message information propagation by inter-vehicle

communication for an autonomous detection and prediction of dynamic jam fronts.

8.1 Modeling Automated and Manual Driving Behavior

When dealing with traffic simulations for describing the effects of ACC-based driving, one

has to take into account the operational differences between human drivers and ACC-

controlled vehicles. Let us start with the representation of real-world ACC systems by
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8.1 Modeling Automated and Manual Driving Behavior

Model Parameter Car Truck

Desired velocity v0 120 km/h 85 km/h

Safety time headway T 1.5 s 2.0 s

Maximum acceleration a 1.4 m/s2 0.7 m/s2

Desired deceleration b 2.0 m/s2 2.0 m/s2

Jam distance s0 2.0 m 2.0 m

Table 8.1: Model parameters of the Intelligent Driver Model (IDM) for cars and trucks used in

this chapter. The vehicle length has been set to 4m for cars and 12m for trucks, respectively.

Vehicles equipped with the ACC system adapt their parameters T , a and b to the detected traffic

situation summarized by the strategy matrix in Table 7.1 on page 118.

means of a microscopic traffic model. From a control-theoretical point of view, the input

quantities of an ACC system, i.e., the vehicle’s own speed, the distance to the car ahead

and the velocity difference are exactly those of many car-following models. Moreover,

as the ACC’s radar detection time is generally negligible, ACC systems determine the

instantaneous acceleration v̇(t) as a function of the actual velocity v(t), the gap s(t) and the

approaching rate ∆v(t) to the leading vehicle. This corresponds directly to the formulation

of car-following models which are limited in their reaction to the direct leader. In the

following simulations, we therefore represent ACC-controlled vehicles by the IDM (cf.

Chap. 2). From a traffic modeler’s point of view, it is interesting that this correspondence

can also be applied the other way round: A real-world implementation of an ACC system

based on the IDM has recently been presented by Volkswagen within the German research

project Invent (cf. App. B).1

While the car-following approximation is perfectly suited to model the dynamics of ACC-

controlled vehicles, the human driving style differs from it in essential points. The finite

reaction times of humans and limited attention spans result in a delayed response to the

traffic situation. Imperfect estimation capabilities result in perception errors. However,

human drivers routinely scan the traffic situation several vehicles ahead, while the ACC

sensors are restricted to the immediate vehicle in front. Furthermore, human drivers

anticipate future traffic situations by making use of further cues and by forming hypotheses

such as assuming constant accelerations of neighboring vehicles for the next few seconds.

These aspects have explicitly been considered in the HDM approach presented in Chap. 4.

In order to investigate the influence of different modeling approaches to the representation

1Clearly, when implementing a concrete ACC system, one has to take into account present imperfections
of ACC systems due to the vehicle’s delayed response action in the control path (as opposed to the
measurement process), resulting in time delays as well [65].
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8 Integrated Simulation of Traffic-Adaptive Cruise Control

of ACC and human-like driving behavior, we have carried out simulations with a varying

proportion of ACC-equipped vehicles represented by the IDM (with parameters listed in

Table 8.1) and human drivers modeled by the HDM (with a reaction time of 0.9 s and

na = 3 as number of anticipated vehicles). The simulated freeway section was 15 km

long and an on-ramp as typical representative for a stationary bottleneck was located at

x = 12 km. We have simulated idealized rush-hour conditions by linearly increasing (and

afterwards decreasing) the inflow at the upstream boundary. In order to begin with, we

have considered the most simple case of one lane with traffic only consisting of cars. For

more details on the simulation setup, we refer to Sec. 8.2, in which the same boundary

conditions will be used in a three-lane freeway scenario.

Figure 8.2 shows the resulting spatiotemporal dynamics for ACC penetrations of 0%,

10%, 20% and 30%. The diagrams in the left column correspond to a mix of HDM and

IDM models, while the right column shows simulations exclusively based on the IDM

using the same boundary conditions. Although the HDM leads to smoother upstream

jam fronts, both simulation approaches show a similar spatiotemporal traffic dynamics:

The simulation runs without ACC vehicles show a traffic breakdown after t ≈ 1 h at the

on-ramp due to the increasing incoming traffic at the upstream boundary. Moreover,

an increasing proportion of ACC-equipped vehicles implementing the automated traffic-

adaptive driving strategy (cf. Table 7.1) leads to a distinct reduction of traffic congestion.

A proportion of even 10% ACC vehicles improves the traffic flow, while the traffic jam

disappears completely for a proportion of ACC vehicles of 30%.

The comparison of the simulations, in which drivers have been either simulated by the

IDM or the HDM, indicates that the overall macroscopic traffic dynamics does not depend

on the details of the specific modeling approach. Furthermore, the positive impact of the

traffic-adaptive ACC vehicles on the collective dynamics arises in both settings showing

the generality of the traffic-adaptive driving strategy. Despite the differences between both

models, the IDM based on the simple car-following approximation is able to essentially

reproduce the macroscopic dynamics of the more complex HDM approach.2 This finding

is in agreement with the analysis of the HDM in Chap. 4. There, the result was that

the destabilizing effects of reaction times and estimation errors are (to a large extent) be

compensated for by spatial and temporal anticipations. Consequently we may conclude

that, although the mode of operation is fundamentally different, ACC-equipped vehicles

and manually controlled vehicles exhibit a similar effective driving behavior with respect

to collective properties such as the stability of traffic flow, traffic performance (measured

in terms of capacity) or the emergence and propagation of traffic congestion.3

2Note that, also on a microscopic level, the IDM has been able to reproduce the trajectories of human
drivers to a satisfying extent (see Chap. 3).

3One might even speculate that hypothetical mixed future traffic consisting predominantly of automated
vehicles will exhibit macroscopic dynamics similar to that of the actual traffic, although the driving
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Figure 8.2: Spatiotemporal dynamics of the average velocity for various proportions of ACC

vehicles which implement the traffic-adaptive driving strategy (cf. Chap. 7). The contour diagrams

display the local velocity as a function of the longitudinal location x and time t. The simulations

in the left column are carried out with a mixture of HDM vehicles (representing manual driving)

and IDM vehicles (representing automated driving by means of ACC). The diagrams in the right

column show simulations for the same boundary conditions, using the IDM also for human drivers.

Both scenarios show a similar jam formation with a stationary downstream front pinned at the

on-ramp at x = 12 km. Even a small increase of the percentage of traffic-adaptive ACC vehicles

leads to a reduction of traffic congestion in both sets of simulations.

strategy would be markedly different.
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Figure 8.3: Summary of the modeling approach: Because the mode of operation of ACC systems

directly corresponds to the control task of a car-following model, we associate the IDM with an

‘ideal’ ACC system, i.e., with perfect sensors and negligible power train response times. A detailed

representation of manual driving requires a more complex modeling approach. The main aspects

of human driving behavior are captured by the HDM. On a macroscopic level, however, the HDM

and the IDM show a similar effective traffic dynamics (cf. Chap. 4).

The generality of the concept which does not depend on the details of the underlying

traffic models has been demonstrated in Fig. 8.2. In the remainder of this chapter, the

influence of the proposed automated driving strategy using ACC systems on macroscopic

properties of traffic flow will be investigated. As it is primarily intended as a ‘proof of

concept’ only, it is well justified to simulate human drivers with car-following models such

as the IDM instead of using more complex models such as the HDM. The advantage of

using simple models for both human-driven and automated vehicles lies in the reduced

number of parameters that need to be calibrated. Moreover, the simulation results are

easier to interpret and to review. Figure 8.3 summarizes our modeling approach.

8.2 Simulations with an On-Ramp Bottleneck

In this section, we will study an open road system with an on-ramp as a typical represen-

tative for a stationary bottleneck. We will consider a three-lane freeway section of 15 km

length. The center of the on-ramp is located at x = 12 km and the merging zone has a

length of 300 m.

Spatiotemporal dynamics under idealized rush-hour conditions: In a first scenario,

we have simulated idealized rush-hour conditions by linearly increasing the inflow at the

upstream boundary over a period of 1 hour from 1000 veh/h/lane to 1700 veh/h/lane.

Afterwards, we have linearly decreased the traffic volume to 1000 veh/h/lane over a period
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8.2 Simulations with an On-Ramp Bottleneck

of 3 hours until the simulation has been stopped after a duration of 5 hours. Furthermore,

we have assumed a constant ramp flow of 250 veh/h/lane and an overall truck fraction

of 10%. Since the maximum overall flow of 1950 veh/h/lane exceeds the road capacity,

a traffic breakdown is typically provoked at the bottleneck around 1:40 h. Figure 8.4

shows the resulting spatiotemporal dynamics for ACC equipment rates of 0%, 10%, 20%

and 30%, respectively. For the purpose of better illustration, we have plotted the lane-

averaged mean velocity upside down. Note that the downstream front of the traffic jam

is stationary and localized at the on-ramp. After the breakdown of traffic flow, a queue

builds up in upstream direction. The parabola-shaped jam formation reflects the applied

upstream boundary conditions.

Similar to the results of the one-lane scenario shown in Fig. 8.2, an increased proportion of

ACC-equipped vehicles in three-lane simulations leads to a reduction of the traffic jam. A

proportion of even 10% ACC vehicles improves the traffic flow significantly. In contrast to

the one-lane scenario studied in Fig. 8.2, the traffic jam is not yet completely avoided by

an ACC proportion of 30%, although the time-dependent traffic demand per lane and the

ramp flow are identical. The reason is that the consideration of the slower trucks reduces

the average maximum throughput and the dynamic capacity of the system (cf. Chap. 9
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Figure 8.4: Spatiotemporal traffic dynamics of a three-lane freeway around an on-ramp located

at x = 12 km for different proportions of ACC vehicles, represented by the lane-averaged velocity

upside down. The simulations show the positive impact of ACC-equipped vehicles applying an

adaptive driving strategy introduced in Chap. 7. The inflow at the upstream boundary is first

increased and afterwards decreased to represent idealized rush-hour conditions.

129



8 Integrated Simulation of Traffic-Adaptive Cruise Control

 0

 500

 1000

 1500

 2000

16:00 17:00 18:00 19:00 20:00

T
ra

ffi
c 

flo
w

 (
1/

h/
la

ne
)

Time (h)

1−min data
average

 0

 10

 20

 30

 40

 50

 60

16:00 17:00 18:00 19:00 20:00

T
ru

ck
 p

ro
po

rt
io

n 
(%

)

Time (h)

1−min data
average

 0
 30
 60
 90
 120
 150

 32
 34

 36
 38

 40
 42  16

 17
 18

 19
 20

 0
 50

 100

V (km/h)

V(km/h)

x (km)

t (h)

V (km/h)

Figure 8.5: Top: Time series of empirical 1-min loop detector data of the lane-averaged traffic

flow and truck proportion used as upstream boundary conditions in our traffic simulations. The

data show the afternoon rush-hour peak on the German autobahn A8 from Munich to Salzburg

(Austria). The moving averages (red thick lines) are only plotted for a better overview over the

strongly fluctuating quantities. Bottom: Average spatiotemporal velocity reconstructed from cross-

sectional detector data with the ‘Adaptive Smoothing Method’ [120] showing oscillating congested

traffic during the afternoon rush-hour. An incident leading to a temporary lane closing further

downstream causes even denser congested traffic that propagates through the region of oscillating

traffic.

below).

Spatiotemporal dynamics with empirical boundary conditions: The traffic volume at

the upstream boundary is the natural control parameter of the considered freeway section.

For a more realistic traffic scenario, we have therefore used empirical detector data from the

German freeway A8 from Munich to Salzburg (Austria) as upstream boundary condition.

Figure 8.5 shows the 1-min data of the lane-averaged traffic flow and the proportion of

trucks during the evening rush-hour between 15:30 h and 20:00 h. Note that, in the real-

world data, traffic further downstream of the detector was congested between 17:00 h and

19:30 h due to a combination of an on-ramp and an uphill gradient, as illustrated in Fig. 8.5

as well. Moreover, we have assumed a constant ramp flow of 250 veh/h/lane with 10%

trucks.4

We have studied the impact of the proposed traffic assistance system by carrying out

several simulations with varying proportions of vehicles equipped with ACC systems, see

4In Sec. 8.3, we will use the same boundary conditions in combination with an uphill gradient.
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Figure 8.6: Spatiotemporal traffic dynamics represented by the lane-averaged velocity around an

on-ramp located at x = 12 km on a three-lane freeway for different proportions of ACC vehicles.

The inflow at the upstream boundary was taken from empirical 1-min detector data during the

evening rush-hour, as shown in Fig. 8.5. The simulations demonstrate the positive impact of the

traffic-adaptive cruise control system introduced in Chap. 7.

Fig. 8.6. Again, we have plotted the lane-averaged mean velocity upside down for the

purpose of intuitive illustration of congested traffic. The simulation scenario without

ACC vehicles shows a traffic breakdown at the on-ramp around t = 17:00 h which is due

to the increasing incoming traffic at the upstream boundary during the rush-hour. The

other three diagrams of Fig. 8.6 show simulation results for an increasing proportion of

ACC-equipped vehicles which reduces traffic congestion significantly. A proportion of

even 5% ACC vehicles improves the traffic flow due to a delayed traffic breakdown. This

demonstrates the efficiency of the proposed automated driving strategy and its positive

effect on capacity even for small penetration levels. Note that an equipment level of 25%

ACC vehicles avoids the traffic breakdown in this scenario nearly completely.

Instantaneous and cumulative travel time: Let us now consider the travel time as the

most important variable of an user-oriented measure of the level of service [31]. The

instantaneous travel time of a given road segment is defined by Eq. (6.7) on page 107

which is an estimate for the actual travel time of a single driver. Moreover, the cumulative

travel time of all simulated vehicles is defined by the respective number of vehicles on

the simulated road section, integrated over time (cf. Chap. 6 for details). Note that
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Figure 8.7: Instantaneous and cumulative travel times for different ACC equipment levels. The

instantaneous travel time reflects the strong effect of a traffic breakdown on individual drivers,

while the cumulative travel time indicates the impact of congestion on the overall system. During

the peak of traffic congestion, the travel time is approximately tripled compared to the travel time

under free flow conditions (approximately 8min). A proportion of 25% ACC vehicles prevents the

traffic breakdown completely.

τinst(t) mainly reflects the perspective of the drivers, while the cumulative travel time is a

performance measure for the overall system.

Figure 8.7 displays the instantaneous and cumulative travel times for the simulation runs

shown before in Fig. 8.6. Obviously, the breakdown of the traffic flow has a strong ef-

fect on the travel time. For example, the cumulative travel time without ACC vehicles

amounts to about 1400 h per lane, whereas the scenario with 25% ACC vehicles results

only in approximately 850 h/lane. Therefore, the traffic breakdown leads to an increase of

the overall travel time by 60% compared to free flow conditions. As in the on-ramp sce-

nario, the travel time of individual drivers at the peak of congestion (i.e., at t ≈ 18:45 h)

is even tripled when compared with the situation without congestion. The time series

of the instantaneous travel times indicate that an increased ACC proportion delays the

breakdown of traffic flow. Even for 5% ACC vehicles, the onset of traffic congestion is

shifted by 20 min when compared with the traffic breakdown at t ≈17:00 h in the scenario

without ACC vehicles.

The results in Fig. 8.7 demonstrate that both the instantaneous and the cumulative travel

time are sensitive measures for the impact of traffic congestion and, thus, the level of

service. In contrast to other macroscopic quantities such as traffic flow or average velocity,

the travel time sums up over all vehicles in the simulation and weights their influence

directly in terms of the travel time. As shown in our simulations, even a slightly increased

capacity due to the traffic-adaptive driving strategy of a small fraction of ACC-equipped

vehicles can have a significant positive impact on system’s performance.
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Figure 8.8: Flow-density relations of 1-min data for several cross-sections up- and downstream of

an on-ramp located at x = 12 km. Results of the simulations without ACC vehicles are directly

compared with results for an ACC equipment level of 25%. Due to the local increase of capacity

by the ACC driving strategy, the latter can practically avoid a traffic breakdown.

Flow-density relations: Let us additionally study the spatiotemporal traffic dynamics by

investigating flow-density data. In order to facilitate a direct comparison with the data

collected from double-loop detectors, we have applied the same data aggregation technique

by introducing ‘virtual detectors’ mimicking real-world cross-sectional measurements (cf.

Chap. 6). We have recorded the traffic flow Q and the mean velocity V within 1-min

sampling intervals. Furthermore, we have determined the density ρ via the hydrodynamic

relation Q = ρV . All quantities are averaged over the three lanes of the simulated road

section. Figure 8.8 shows the resulting flow-density relations for several cross-sections

located up- and downstream of the on-ramp. For direct comparison, we have displayed

the data of the simulations of Fig. 8.6 with an ACC proportion of 25% and without ACC

vehicles in the same plots.

Upstream of the bottleneck (see Fig. 8.8a and b), the flow-density data show a branch of

free traffic flow Q ≈ V0ρ for densities ρ < 30 veh/km/lane (with an average free speed of

V0 ≈ 90 km/h) and a widely scattered area of congested traffic for ρ > 30 veh/km/lane. In

addition, Fig. 8.9 depicts data from detectors together with the equilibrium flow-density

relation of cars and trucks, i.e., their fundamental diagrams (cf. Sec. 2.3 on page 20). Since
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Figure 8.9: Flow-density data from a simulation without ACC vehicles together with the equilib-

rium flow-density curves (fundamental diagrams) for cars and trucks used in the simulations. The

detector data points in the simulation are shifted towards the equilibrium curve of cars because

the proportion of trucks is notably smaller than the one of cars.

the proportion of trucks is significantly smaller than those of cars, the detector data points

are shifted towards the equilibrium curve of cars.

The data of the detectors located downstream (Fig. 8.8c and d) of the on-ramp show that

the maximum flow in free traffic has been increased in the simulation scenario with 25%

ACC vehicles when compared with the simulation without ACC-equipped vehicles. The

increase ∆Q is achieved by the improved driving strategy in the traffic state ‘bottleneck’

(which increases the maximum throughput) and the ‘downstream’ state when leaving the

jam (which increases the outflow from traffic congestion). Consequently, the breakdown

of traffic flow is retarded (or even avoided) and the increased outflow (i.e, the dynamic

capacity) leads to a faster relieve of traffic congestion. Note that, in Chap. 9, we will

systematically investigate both of these capacities, relevant for characterizing the traffic

dynamics in free and congested traffic.
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8.3 Simulations with an Uphill Gradient Bottleneck

8.3 Simulations with an Uphill Gradient Bottleneck

Let us now investigate a traffic scenario with an uphill gradient, which represents a flow-

conserving bottleneck. As in the previous Sec. 8.2, we have simulated a freeway section

of 15 km length with 3 lanes. The uphill region with a gradient slope is modeled by

locally increasing the safety time headway parameter by 40% for all vehicles in a range of

1000 m around the bottleneck location at x = 12.5 km, with smooth linear transitions over

300 m. Again, we have used the empirical detector data from the German freeway A8 East

from Munich to Salzburg (Austria) as time-dependent upstream boundary conditions (see

Fig. 8.5 on page 130).

Figure 8.10 shows the spatiotemporal dynamics of the lane-averaged velocity for various

proportions of ACC vehicles. The simulation scenario without ACC vehicles shows a traffic

breakdown at t ≈ 16:30 h at the upstream front of the uphill bottleneck at x = 12 km

because of the increasing traffic volume during the rush-hour. The other diagrams of

Fig. 8.10 show the simulation results for an increasing ACC proportion. Increasing the

proportion of ACC vehicles applying the traffic-adaptive ACC driving strategy reduces

traffic congestion significantly. An equipment level of 30% ACC vehicles avoids a traffic

breakdown in this scenario completely.

For purpose of comparison with the findings in the previous section, let us also consider

the travel time as important variable for a user-oriented level of service [31]. As indicated

in Fig. 8.11, a breakdown of traffic flow has a strong effect on travel times. For example,

the cumulative travel time without ACC vehicles amounts to about 1400 h/lane, whereas

the scenario with 30% ACC vehicles results in approximately 1000 h. Therefore, the traffic

breakdown leads to an increase of the overall travel time by 40% compared to free flow

conditions. In comparison, the travel time of individual drivers at the peak of congestion

(i.e., at t ≈ 18:45 h) is even tripled when compared with the uncongested situation. In-

creasing the proportion of ACC vehicles reduces the travel times significantly due to the

reduction in the lengths of the traffic jam.

These results are similar to the simulations for an on-ramp bottleneck studied in the

previous Sec. 8.2. Therefore, we have shown that a vehicle-based ACC concept, which

dynamically increases the local capacity near the bottleneck, is applicable to different

kinds of bottlenecks such as an on-ramp or an uphill gradient.

We have chosen the rush-hour scenario in order to demonstrate the qualitative difference

between free and congested traffic conditions, i.e., to reveal the maximum impact of an

traffic-adaptive driving strategy. As shown by means of simulations, the overall traffic

dynamics, particularly the travel times, are not significantly affected by ACC vehicles

under free flow conditions. In contrast, under congested conditions (significantly after the

time of break down), the proposed concept has a significant positive influence, because it
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Figure 8.10: Spatiotemporal traffic dynamics upstream of an uphill gradient located between

x = 12 km and x = 13 km, for different proportions of ACC vehicles. The diagrams represent

the lane-averaged velocity for a three-lane freeway upside down. In the simulations, the inflow at

the upstream boundary is specified according to empirical 1-min detector data during an evening

rush-hour, see Fig. 8.5. Increasing the proportion of ACC vehicles applying the traffic-adaptive

ACC driving strategy can reduce traffic congestion significantly.

is designed to increase the outflow from congested regions. As a consequence, it reduces

both the maximum length of congestion and its duration in time.

Let us finally summarize the factors that contribute to an enhanced system performance

with a relevant reduction of travel times:

• An increased percentage of ACC vehicles leads to a delay of the breakdown of traffic

flow. The reason is that the traffic-adaptive driving strategy of ACC systems is

designed to increase the maximum free flow and, thus, to ‘fill the capacity gap’ at

the bottleneck. In Chap. 9, we will systematically investigate this relationship.
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Figure 8.11: Current and cumulative travel times for different ACC equipment levels corresponding

to simulations of a three-lane freeway with an uphill gradient, see Fig. 8.10. The left diagram shows

the strong effect of a traffic breakdown on the resulting travel times, while the cumulative travel

time indicates the impact of congestion on the overall system.

• A delayed onset of traffic congestion results in a significantly reduced maximum

queue length, given the same inflow further upstream. Note that we treated the

traffic demand at the upstream boundary as a constant (external) parameter.

• A reduced queue length leads, in turn, to an earlier dissolution of the traffic jam.

Moreover, an increase of the outflow at the downstream end of the queue improves

its dissolution.
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8.4 Detection of Dynamic Congestion Fronts by Inter-Vehicle

Communication

As already discussed in Sec. 7.4, the information about temporary bottlenecks, e.g., acci-

dents or dynamic (i.e., moving) congestion fronts cannot be estimated without delay by

local measurements only. A possible solution to this problem is the use of inter-vehicle

communication (IVC) which is widely regarded as a promising concept for a fast trans-

mission of information between vehicles. It implies applications for improved traffic safety

and advanced driver information systems [139, 102, 103, 133, 135, 136]. In contrast to con-

ventional communication channels which operate with a centralized broadcasting concept

via radio or mobile-phone services, IVC is designed as a local service based on the Ded-

icated Short Range Communication (DRSC) standard [143], enabling data transmission

at a frequency of 5.8 GHz. These devices broadcast messages which are received by all

other equipped vehicles within a limited broadcasting range rmax. As IVC message trans-

mission is not controlled by a central station, no further communication infrastructure is

needed. For example, wireless local-area networks (WLAN) have already shown their suit-

ability for IVC with typical broadcasting ranges of 200−500 m [107, 92, 137]. In addition,

short-range broadcasting technology also allows for an integration of the additional feature

of a vehicle-infrastructure communication, using stationary senders (‘roadside units’) as

illustrated in Fig. 8.12.

In general, there are two strategies, how a message can be transported upstream via IVC:

Either a message ‘hops’ from an equipped car to a subsequent equipped car within the

same driving direction (‘longitudinal hopping’) or the message is transmitted to an IVC-

equipped vehicle of the other driving direction which transports the message upstream and

delivers it back by broadcasting it to cars of the original driving direction (‘transversal

hopping’ or ‘store-and-forward’), cf. Fig. 8.12. The problem of the longitudinal hopping

process is that it does not work well for low equipment rates due to the limited broad-

casting range rmax [102]. A concept using IVC for traffic-state detection must therefore

tackle the problem that both the required transport distances into upstream direction and

the distances between two equipped vehicles are typically larger than the broadcasting

range. The transversal hopping mechanism overcomes this problem by using vehicles of

the opposite driving direction as relay stations. Hence, it is even capable of a reliable and

fast information propagation in the cases of low equipment levels (some percent of the

vehicle fleet).

Figure 8.13 shows the probability distribution for successful message propagation according

to simulations of a typical traffic situation (with an overall traffic density of ρ = 29,veh./km

in each direction and an average velocity of V ≈ 85 km/h). The numerical results agree

well with the theoretical expectations based on analytical calculations (for details and
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Figure 8.12: Illustration of various local and non-local data sources for vehicle-based traffic state

detection. In particular, traffic-related messages can be propagated by inter-vehicle communica-

tion: Broadcasted messages can either be received by a subsequent car via ‘longitudinal hopping’

or may be picked up by a transmitter car in the opposite driving direction via ‘transversal hopping’.

In the latter case, the message travels with the transmitter upstream until it is delivered back to

the original driving direction by a further transversal hop. Furthermore, equipped vehicles can

communicate with stationary senders (‘roadside units’) along the freeway.

the derivation of the analytical results, see Ref. [102]). For example, even for an ACC

proportion of α = 5%, 80% of the messages have been transmitted to equipped vehicles at

a location at least ru = 1 km upstream within a time interval of approximately t ≤ 60 s.

The reason for the robustness of the message propagation statistics is that the frequency for

encountering another equipped vehicle in the opposite driving direction (even in the case

of a low equipment rate) is relatively high because the vehicles in the opposite directions

move with a large relative velocity. In contrast, the gaps between equipped vehicles within

the same driving direction do not change significantly over time which results in a low

connectivity for the longitudinal message hopping process in the case of low equipment

levels.

For purpose of demonstration, let us now simulate the whole chain of message propagation

by means of IVC:

1. The generation of traffic-related messages by individual vehicles,

2. the transmission of up-to-date information in upstream direction using transversal

message hopping via the opposite driving direction and

3. the receipt of the messages for predicting the future traffic situation further down-

stream.
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Figure 8.13: Cumulative distributions of transmission times for various equipment rates α via

inter-vehicle communication with a broadcasting range rmax of 250m and a minimum propagation

distance ru of 1 km. Symbols correspond to simulation results and solid curves to analytical results

[102]. The analytical results were well reproduced by explicit simulations of the transversal message

hopping processes. By using the equipped vehicles of the opposite driving direction as transmitter

cars, the message propagation is fast and reliable. For example, 80% of the messages have been

transmitted to equipped vehicles at least ru = 1km upstream within approximately 60 s even for

an ACC proportion of α = 5%.

The simulation is based on a small fraction (3%) of vehicles equipped with IVC. Note that

the provision of non-local information can be used to improve the autonomous traffic state

detection proposed in Sec. 7.3.

The presented microscopic traffic simulator (cf. Chap. 6) simulates two independent free-

ways in opposite direction and generates the underlying vehicular dynamics as illustrated

in Fig 8.12. We consider a scenario with an assumed fraction of only 3% communicating

vehicles. Each equipped vehicle detects jam fronts and generates traffic-related messages

based on the locally available floating car data. In order to this end, the simulation soft-

ware has been extended by a ‘message pool module’ which organizes the book-keeping

of message broadcast and reception between equipped cars within a limited broadcasting

range rmax. In Fig. 8.14, we have set rmax = 10 m for purpose of illustration. As the

routing in this system is obviously given by the two traffic streams in opposite directions,

no further rules are necessary for modeling the message exchange process.

The resulting trajectories of equipped vehicles in both driving directions together with

the generation of messages and their reception by a considered vehicle are illustrated in

Fig. 8.14. There, a temporary road blockage triggered a stop-and-go wave reflected by

horizontal trajectory curves in one driving direction, while the traffic flow in the opposite

driving direction was free. When cars encountered the propagating stop-and-go wave, they

started to broadcast messages about the detected position and time of the upstream jam

front and the following downstream jam front. The event-driven messages were received
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Figure 8.14: Space-time diagram of the simulated traffic scenario. The trajectories of the 3%

IVC-equipped vehicles are displayed by solid or dotted lines, depending on the driving direction.

The vehicles in the other driving direction serve as transmitter cars for the message propagation,

using the transversal hopping mechanism. For purpose of illustration, a small broadcasting range

has been chosen. A temporary road blockage triggers a stop-and-go wave indicated by horizontal

trajectory slopes in one driving direction. When cars reach the front of a moving jam, they

broadcast messages containing the detected position and time, both for the upstream jam front

and the following downstream jam front. The generated messages marked by numbers. They

are received some time later by the considered vehicle further upstream (thick solid line). The

trajectories of the subsequent vehicles of the considered car are not shown. The crossing trajectories

of equipped vehicles (e.g., in the upper-left corner of the diagram) reflect passing maneuvers due

to different desired velocities.

and carried forward by vehicles in the other driving direction via the transversal hopping

mechanism. Eventually, the messages are received by equipped vehicles further upstream.

As shown in Fig. 8.14, the considered vehicle received the first message about the upcoming

traffic congestion already 2 km before reaching the traffic jam. Further received messages

from other equipped vehicles could be used to confirm and update the traffic situation

further downstream. Thus, based on a suitable prediction algorithm, each equipped vehicle

could autonomously forecast the moving jam fronts by extrapolating the spatiotemporal

information of the messages. In the considered simulation scenario, the upstream jam
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fronts were very accurately predicted with errors of ±50 m already 1 km ahead of the jam,

while the errors for the predicted downstream jam amounted to ±100 m. Obviously, the

quality of the jam-front anticipation improves with the number and the timeliness of the

incoming messages. More details about the used prediction algorithm can be found in

Ref. [103].

Finally it should be mentioned that the received and interpreted information about the

upcoming traffic situation cannot only be used for an improved autonomous detection, but

also offers promising possibilities for advanced traveler information systems. Interestingly,

in a survey among approximately thousand Dutch motorists, about 90% of the drivers

declared that they would appreciate information about the downstream traffic conditions

such as congestion, road works, etc. [126].
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9 Influence of the ACC Equipment Level on Traffic

Capacities

In this chapter, the impact of a systematically increasing proportion of ACC-equipped

vehicles on the variables relevant for the traffic performance will be investigated. In free

flow, the maximum throughput is determined by the maximum flow obtained until the

traffic flow breaks down, while in congested traffic it is given by the dynamic capacity

(i.e., the downstream outflow from a traffic jam). These capacities will be studied in

Secs. 9.1 and 9.2. In Sec. 9.3, the cumulative travel time will be considered. Furthermore,

the influence of the heterogeneity of the vehicle fleet and the influence of the λ-factors

of the proposed driving strategy matrix will be analyzed. Throughout this chapter, we

will consider a similar simulation scenario as in Sec. 8.2, with a two-lane freeway and

an on-ramp serving as bottleneck. Since the considered quantities result from traffic

simulations, a statistical method has been developed that evaluates the gradual change

in the ACC equipment level together with the variation in the traffic quantities observed

in the simulations. The corresponding smoothing method is based on weighted linear

regression and documented in App. A on page 165.

9.1 Maximum Flow in Free Traffic

In this section, the system dynamics until the traffic flow breaks down will be examined

in detail. In particular, we will focus on the influence of the external parameters such

as the safety time gap T and the proportion of ACC-equipped vehicles. As shown in the

previous Chap. 8, a traffic flow breakdown involves a significant reduction of traffic capacity

which, in turn, leads to a drastic rise in travel times. Therefore, the traffic state ‘passing

a bottleneck section’ in the ACC driving strategy matrix aims at an suppression (or, at

least, at a delay) of the traffic flow collapse by lowering the time gap T in combination with

an increased acceleration a (cf. Sec. 7.1). Note that a local reduction in the road capacity

is the defining characteristics of a bottleneck. Consequently, the proposed driving style

in the bottleneck section should lead to a dynamic homogenization of the road capacity,

thereby allowing for a higher maximum flow at the bottleneck.

The relevant measure for assessing the efficiency of the proposed driving strategy ‘passing

a bottleneck section’ is the maximum possible flow until the traffic flow breaks down. An
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9 Influence of the ACC Equipment Level on Traffic Capacities

upper bound for this quantity C, defined as maximum number of vehicles per unit time

and lane, is given by the inverse of the time gap, i.e., C < 1/T . According to Eq. (2.14),

however, the theoretical maximum flow also depends on the effective length leff = l + s0

(which is given by the vehicle length l plus the minimum bumper-to-bumper distance s0)

of a driver-vehicle unit, resulting in

Qtheo
max =

1

T

(

1 − leff
v0T + leff

)

. (9.1)

Note that this static road capacity Qtheo
max corresponds to the maximum of a triangular

fundamental diagram. In the case of the IDM (with a finite acceleration), the theoretical

maximum is even lower (cf. Sec. 2.3 on page 20). Generally, the maximum free flow Qfree
max

before traffic breaks down is a dynamic quantity that depends on the traffic stability as

well. Typically, this quantity is lower than Qtheo
max. In summary, we have the inequalities

1

T
> Qtheo

max(triangular) ≥ Qtheo
max(IDM) ≥ Qfree

max ≥ Qout. (9.2)

The dynamic capacity Qout (which characterizes the outflow from a traffic jam) will be

considered in the following Sec. 9.2. Note that the equality signs are only obtained in the

limit of perfectly stable traffic.

In the following, we will therefore analyze the maximum free flow Qfree
max resulting from

traffic simulations. To this end, we have considered a similar simulation scenario as in

Sec. 8.2 with a two-lane freeway and an on-ramp serving as a bottleneck. The inflow at

the upstream boundary was increased at a constant rate of Q̇ = 700 veh/h2, while the

ramp flow was kept constant with 250 veh/h/lane. We have checked other progression

rates as well, but only found a marginal difference. In order to determine the maximum

free flow, we have used the following criterion: A traffic breakdown is detected if more than

20 vehicles on the main road are driving slower than a critical velocity vcrit = 30 km/h.

Once a traffic breakdown was detected, we used the flow of the actual 1-min aggregate

of a ‘virtual’ detector (cf. Sec. 6.4) located downstream of the on-ramp for measuring the

maximum flow.

Probability of traffic flow breakdown: The maximum free flow Qfree
max results from a

measurement process which is based on 1-min aggregation intervals. As the underlying

complex traffic simulation involves nonlinear models, discrete lane change decisions, ran-

dom influences (such as the determining of the vehicle type while inserting at the upstream

boundary etc.), it is expected that Qfree
max will vary stochastically leading to different re-

sults, also for identical boundary and initial conditions.1 Consequently, we will consider

1Assuming a random seed of the computer’s pseudorandom number generator.
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Figure 9.1: Traffic breakdown probability for an ACC equipment rate of 0% and 20%, respectively,

and for different degrees of heterogeneity due to stochastically distributed parameters (see main

text). The diagrams show the cumulative distribution functions of the maximum free flow Qfree
max

resulting from 1000 simulation runs and numerical fits for the cumulative Gaussian distribution

N(x;µ, σ2). An increased proportion of ACC vehicles shifts the maximum flow at which the traffic

flow breaks down to larger values. The fit parameters are listed in Table 9.1.

the maximum free flow as a random variable which reflects the probabilistic nature of a

traffic flow breakdown also observed in real traffic [93, 56].

The statistical properties of Qfree
max have been investigated by means of repeated simulation

runs. Overall, we have simulated eight scenarios. In order to begin with, we have varied

the mixture of the vehicle fleet by considering different vehicle types. In particular, we

have examined scenarios without trucks and with a total truck percentage of 10%, and,

in addition, without ACC-equipped vehicles and with an ACC equipment level of 20%.

Furthermore, we have considered inter-driver variability by assigning uniformly and inde-

pendently distributed values to the parameters v0, T , a and b of width ±20%, i.e., the

averages of the parameter values have been left unchanged and the width of the distribu-

tions have been set to 20% (i.e., the individual values vary between 80% and 120% of the

average parameter value).

Each scenario has been simulated 1000 times to derive the statistical properties of the

maximum free flow. The resulting cumulative distribution functions for Qfree
max reflecting

the probability of a traffic flow breakdown are shown in Fig. 9.1 (for the scenarios without

trucks) and in Fig. 9.2 (for the scenarios with 10% trucks).

As the measurement of the maximum free flow yields a distribution of finite variance and

results from many stochastic contributions, the resulting cumulative distribution function

follows the Central Limit Theorem2 and can be fitted numerically with the integrated (and

2The Central Limit Theorem states that the sum of independent statistical variables will be approximately
normally distributed if all variances are finite and if each individual variance is much smaller that the
summed variance.
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Figure 9.2: Cumulative distribution functions of the maximum free flow Qfree
max for similar traffic

scenarios as shown in Fig. 9.1. In addition to the simulations shown in Fig. 9.1, we have considered

10% trucks. The numerically fitted parameters of the cumulative Gaussian distributions are listed

in Table 9.1.

normalized) Gaussian function

N(x; µ, σ2) =
1

σ
√

2π

x∫

−∞

e
(t−µ)2

2σ2 dt, (9.3)

where µ is the mean value and σ2 the variance. The fit parameters are listed in Table 9.1.

The main results are as follows:

• The Gaussian distribution function N(x; µ, σ2) fits the simulation results well (see

Figs. 9.1 and 9.2). The maximum free flow Qfree
max follows a normal distribution.

Thus, the fit parameters µ and σ2 are good estimators for the mean value and the

variance of the Gaussian distribution.

• In all considered scenarios, an increased proportion of ACC vehicles shifts the max-

imum throughput to a larger value µ. This shows the positive impact of the traffic-

adaptive driving strategy on the traffic efficiency. In particular, the temporary

change of the driving characteristics while passing the bottleneck helps to increase

the maximum throughput by 6–8% in the considered scenarios (with an ACC equip-

ment level of α = 20%). Note that we will furthermore investigate this performance

increase as a function of the equipment level α below.

• The considered traffic scenarios show different degrees of heterogeneity, i.e., mix-

tures of various vehicle types (cars and trucks, equipped with ACC system or not).

Moreover, v0, T, a and b are stochastically distributed as mentioned above. An in-

crease in the degree of heterogeneity leads to larger fluctuations in the traffic flow

which, in turn, results in a larger variation σ of the random variable Qfree
max and also
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9.1 Maximum Flow in Free Traffic

Simulation scenario ACC fraction µ/(h/lane) σ2/(h/lane)2

0% trucks 0% ACC 1887 352

0% trucks 20% ACC 2007 592

10% trucks 0% ACC 1719 632

10% trucks 20% ACC 1845 892

0% trucks, distr. parameters 0% ACC 1858 382

0% trucks, distr. parameters 20% ACC 1983 652

10% trucks, distr. parameters 0% ACC 1679 792

10% trucks, distr. parameters 20% ACC 1814 1002

Table 9.1: Parameters of the cumulative Gaussian distribution N(x;µ, σ2) for different simulation

scenarios shown in Figs. 9.1 and 9.2. The Gaussian distributions have been numerically fitted to

the data for the maximum free flow Qfree
max resulting from 1000 simulation runs. An increase in the

degree of heterogeneity (due to different types of vehicles or stochastically distributed parameters)

results in a larger variation σ of flow at which traffic breaks down.

to a slightly reduced mean value. Note that Qfree
max varies even in simulations with

identical cars which can be associated with deterministic chaos [105].

• As the consideration of ACC-equipped vehicles with their adaptive (i.e., time-

dependent) parameter choice increases the level of heterogeneity in a significant way,

the variation σ is increased compared to the values without ACC vehicles. This find-

ing makes it clear that the impact of ACC-equipped vehicles on the traffic dynamics

must be studied with a realistic level of heterogeneity, e.g., in a multi-lane freeway

scenario considering cars and trucks. Otherwise, the assessment of ACC systems

may erroneously lead to negative results.

Maximum free flow as a function of the ACC proportion: Let us now investigate the

maximum free flow as a function of the ACC proportion α. To this end, we have gradually

increased α in a range from 0 to 50% using the same scenario as described above. In

Fig. 9.3, the result of each simulation run is represented by a point. As expected from

our previous findings, the values of the maximum free flow Qfree
max vary stochastically. For

better illustration, we have therefore developed a weighted linear regression method which

calculates the expectation value and the standard deviation as a continuous function of

α. This allows for an intuitive assessment of the variation by means of a ‘variation band’

around the expectation value. The only parameter of this evaluation procedure is the
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Figure 9.3: Maximum free flow as a function of the ACC percentage α without (left) and with

10% trucks (right). The single simulation runs are depicted by symbols and vary stochastically.

Using a linear regression with a local weight of width δ = 0.1 (cf. App. A), we have calculated

the expectation value and the variation of the simulation data. Note that the genuine cumulative

distributions for α = 0% and α = 20% are shown in Fig. 9.1.

width δ of the smoothing kernel. Here, we have used δ = 0.1. The numerical method is

explained and derived in detail in App. A on page 165.

Figure 9.3 shows the results for a traffic scenario without trucks and a scenario with 10%

trucks. As expected, increasing the proportion of trucks with their higher safety time

gap T (cf. Table 8.1) reduces the maximum free flow. However, the average value of

the maximum free flow increases with growing ACC equipment level α. The gain in the

maximum free flow is basically proportional to α.

Figure 9.4 summarizes the simulation results for various truck proportions (0%, 10% and

20%). In addition, we have plotted the relative increase qfree
max of the maximum flow com-

pared to the situation with non-equipped vehicles,

qfree
max =

Qfree
max(α)

Qfree
max(0)

. (9.4)

This quantity allows for a direct comparison between the different simulation scenarios.

For example, the gain in the maximum free flow varies between approximately 16% and

21% for a given ACC portion of 50%. For an ACC portion of 20%, the maximum free

flow increases by approximately 7%. Although this appears to be a small rise, one should

not underestimate its impact on the resulting traffic dynamics. As we have shown in the

previous Chap. 8 in different simulation scenarios, an ACC proportion of 20% prevents (or,

at least, delays) the traffic flow breakdown. Comparing this to the reference simulation

without ‘intelligent’ ACC-equipped vehicles, individual travel times vary by a factor of 2

or 3! As the gain in the maximum free flow is basically proportional to α, the quantity

qfree
max/α is approximately constant and describes the relative gain in Qfree

max per ACC portion
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9.1 Maximum Flow in Free Traffic

α. The values for the simulations shown in Fig. 9.4 are in the range between 0.32 and

0.42.
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Figure 9.4: Left: Maximum free flow until traffic breaks down as a function of the ACC proportion

for various truck fractions. Increasing the portion of trucks decreases the maximum free flow.

(Right) Relative growth according to Eq. (9.4) allowing for a direct comparison. Note that even a

rise of the maximum free flow by 5% (e.g., for an ACC portion of 15%) leads to a large reduction

in individual travel times as demonstrated in Chap. 8.
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Figure 9.5: Maximum free flow as a function of the ACC proportion for the simulation scenario

with 10% trucks. The ACC driving strategy in the ‘bottleneck’ state is varied: The left diagram

shows various settings for λT while keeping the maximum acceleration a constant. The right

diagram refers to simulations with varying λa for a constant time gap T . With increasing ACC

penetration rate, the crucial influence of the time gap becomes obvious while the impact of a in

the ‘bottleneck’ state does not influence the maximum free flow in a relevant way. Note that the

green lines (derived with the numerical method documented in App. A) correspond to the default

settings of the proposed strategy matrix listed in Table 7.1.

Maximum flow for different driving strategy parameters: Besides the proportions of

trucks and ACC-equipped vehicles, the traffic performance is influenced by the multipli-

cation factors λ of the ACC driving strategy in the bottleneck state. In particular, the
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9 Influence of the ACC Equipment Level on Traffic Capacities

maximum free flow depends on the modification λT of the time gap and λa of the maximum

acceleration in the ‘bottleneck’ state. As ‘default’ values, we have chosen λbottle
T = 0.7 and

λbottle
a = 1.5 (see Table 7.1 on page 118). While considering the aforementioned simula-

tion scenario with 10% trucks, we have varied these driving strategy parameters in the

‘bottleneck’ state. The results shown in Fig. 9.5 are as follows:

• The safety time gap T has a strong impact on the maximum free flow as displayed

in the left diagram of Fig. 9.5 (while keeping λbottle
a = 1.5 constant). A further

reduction of the ACC time gap by λT = 0.5 leads to a stronger increase in the

maximum free flow when considering a growing ACC proportion compared to the

‘default’ setting λT = 0.7. Note that this is consistent with Eq. (9.1). Moreover, the

modification of a alone while keeping T unchanged (λT = 1) does not improve the

maximum free flow.

• The maximum acceleration a has clearly a smaller effect on the maximum free flow

than T , as displayed in the right diagram of Fig. 9.5. While keeping λT constant,

different settings such as λa = 1, 1.5 or 2 do not change the resulting maximum

free flow in a relevant way. So, the throughput can only be efficiently increased in

combination with smaller time gaps (corresponding to lower values of T ), but not

by increasing the acceleration a alone.

Maximum free flow as a function of the time gap: Finally, we have investigated the

influence of the time gap T which is according to Eq. (9.1) the most important parameter

for the static road capacity. The simulation results for the observed maximum free flow

Qfree
max as a function of the safety time gap T are shown in Fig. 9.6. We have simulated a

homogeneous vehicle fleet consisting of cars only. The single simulation runs are depicted

by symbols. For a concise illustration of the stochastic variations, we have again used the

weighted linear regression method, with a width of δ = 0.3 (cf. App. A).

Obviously, the maximum free flow decreases with increasing T . The dynamic quantity

Qfree
max remains always lower than the theoretical capacity Qtheo

max given by Eq. (9.1) which

is only obtained for perfectly stable traffic and serves as a theoretical upper bound (cf.

Eq. (9.2)). Furthermore, as the difference between Qtheo
max and the dynamic maximum free

flow increases for lower values of T , one finds that smaller values of T reduce stability as

well.

9.2 Dynamic Capacity after a Traffic Breakdown

Let us now investigate the system dynamics after a breakdown of traffic flow. Traffic

jam formation is determined by the difference of the upstream inflow Qin (i.e., the traffic
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Figure 9.6: Maximum free flow as a function of the safety time gap T which is the most important

parameter for the maximum throughput. The static maximum road capacity according to Eq. (9.1)

is indicated by dashed lines. The maximum free flow as a dynamic quantity is typically lower, but

depends on the traffic stability as well. Symbols indicate results of single simulation runs, while the

solid lines correspond to averages over several simulations and the associated bands to plus/minus

one standard deviation.

demand) and the outflow Qout from the downstream jam front (i.e., the head of the queue)

which is also called ‘dynamic capacity’. On the long run, a given traffic demand can only

be influenced by a different route choice of the drivers in the network which is not within

the scope of this investigation. Consequently, a short-term reduction of traffic congestion

can only be obtained by increasing the outflow. This is the intention of the proposed traffic

state ‘downstream jam front’ (cf. Sec. 7.1) which aims at a brisk leaving of the queue by

increasing the maximum acceleration a and decreasing the safety time gap T of the ACC

system.

In this section, we investigate the impact of such an ACC driving strategy on the dynamic

capacity which is the crucial quantity during traffic congestion [18]. We use the same

simulation setup (of a two-lane freeway with an on-ramp) as in the previous section.

Whenever a traffic breakdown was provoked by the increasing inflow, we aggregate the

flow data of the ‘virtual detector’ 1 km downstream of the bottleneck within an interval

of 10 minutes.

Dynamic capacity as a function of the ACC proportion: Figure 9.7 shows the resulting

dynamic capacity for a variable percentage of ACC vehicles in a scenario without trucks

and in a scenario with 10% trucks. Single simulation runs are depicted by symbols, while

the average and the variation band were calculated from the scattering values with the

weighted linear regression method using a width δ = 0.1 (cf. App. A). As intended by the

proposed driving strategy of ACC-equipped vehicles, the dynamic capacity increases with

growing ACC equipment rate.
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Figure 9.7: Dynamic capacity as a function of the percentage of ACC vehicles (left) without

trucks and (right) with 10% trucks. The outflow from a traffic jam increases with a growing

number of ACC-equipped vehicles. The single simulation runs (symbols) have been smoothed with

the weighted linear regression method using a width of δ = 0.1.

Figure 9.8 compares the results for different truck proportions. Furthermore, we have

defined the relative increase of the dynamic capacity qout(α) by a given ACC equipment

level α by

qout(α) =
Qout(α)

Qout(0)
. (9.5)

The relative increase of qout for α = 50% is between 12% and 16% and therefore some-

what lower than the increase of the maximum free capacity (cf. Sec. 9.1). Interestingly,

the dynamic capacity does not increase linearly as the measured maximum free capacity

displayed in Fig. 9.3 on page 148, but faster. Consequently, the relative increase qout(α)

grows for higher ACC equipment rates α. This can be understood by an ‘obstruction

effect’ caused by slower accelerating drivers (in particular, trucks) which hinder faster

(ACC) vehicles.

Furthermore, we can compare the maximum free capacity Qfree
max displayed in Fig. 9.3 on

page 148 with the dynamic capacity Qout which is lower than Qfree
max. The difference between

both traffic quantities is referred to as capacity drop.3 We found that the values of the

relative capacity drop are between 5 and 15% for various simulations.

Dynamic capacity for different driving strategy parameters: The increase of the dy-

namic capacity is based on the proposed driving strategy for the traffic regime ‘downstream

jam front’. The ACC-equipped vehicles increase their maximum acceleration a in combi-

nation with a decrease in time gap T (cf. Table 7.1 on page 118). In Fig. 9.9, simulation

results are shown for varying relative factors λa and λT for the relevant traffic state ‘down-

3The capacity drop is the crucial quantity determining the performance (loss) in throughput of the freeway
transportation system. Note that the capacity drop accounts for the persistence of traffic jams once
the traffic flow has broken down. Realistic values for the capacity drop are between 5% and 20%
[53, 14, 19, 61].
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Figure 9.8: Left: Dynamic capacity as a function of the ACC equipment level for different truck

proportions. The ACC driving strategy associated with the traffic state ‘downstream jam front’

increases the dynamic capacity for a growing ACC equipment rate. The lower acceleration capa-

bility of trucks (cf. Table 8.1) leads to a lower dynamic capacity. Right: The relative increase in

the outflow is in the range of 12-15% for a considered ACC portion of 50%.

stream jam front’ (using a scenario with 10% trucks). The default values λdown
a = 2 and

λdown
T = 0.5 correspond to the results shown before in Fig. 9.7. The simulation results

show that the dynamic capacity is only increased in a relevant way by adapting a and T

simultaneously.

Dynamic capacity of moving downstream jam fronts: Empirical investigations have

shown that most of the traffic flow breakdowns are located at permanent bottlenecks and

the downstream jam front is almost always located (‘pinned’) at the bottleneck [101, 72].4

Based on the assumption that the position of a stationary bottleneck (e.g., an on-ramp) is

provided by a digital map database, the autonomous detection algorithm reliably estimates

the downstream jam front leading to an increase of the dynamic capacity as shown before.

Nevertheless, as mentioned in Sec. 7.4, non-stationary (i.e., moving) jam fronts are more

difficult to detect on the basis of local information only. We will explicitly investigate this

using the simulation scenario depicted in Fig. 8.14 on page 141: A triggered stop-and-go

wave is moving in upstream direction. The downstream jam front is detected using the

criterion (7.7) on page 120 for the velocity. Due to the required smoothing of the data

input using the exponential moving average, the autonomous real-time detection of the

‘downstream’ state is delayed by the order of the relaxation parameter τ , i.e., 5 s in our

case.

This delay makes the adaptation to the traffic state ineffective, as illustrated in Fig. 9.10

for various truck fractions: The simulation results clearly show that the dynamic capacity

is not increased by the ACC driving strategy in this case. Of course, a more sensitive

detection of the downstream front, e.g., by lowering the relaxation time τ of the real-time

4Further examples from traffic simulations are shown in Figs. 8.6 on page 131 or 8.10 on page 136.
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Figure 9.9: Dynamic capacity for various parameter values of the ACC adaption in the ‘down-

stream jam front’ traffic state. Top: Variation of the relative time gap λT keeping the relative

maximum acceleration constant (λa = 2). Bottom: Variation of λa while keeping λT constant at

the default value 0.5. The simulation results show that the dynamic capacity is increased in a

relevant way only by adapting a in combination with T .

EMA (7.2), would allow for an increase of the dynamic capacity within certain limits, but

this would also lead to significantly more detection errors. Consequently, it is crucial for

an efficient relieve of traffic congestion to switch to the ‘downstream’ driving regime in

an anticipative and timely way. The required non-local information about moving jam

fronts can be provided by inter-vehicle communication (as we have explicitly evaluated in

Sec. 8.4) or communication with a roadside unit (RSU). Obviously, it would be ideal for

a fast and reliable detection of the traffic state to ‘fuse’ several data sources.

9.3 Cumulative Travel Time as Function of the ACC Proportion

In this section, we will finally study the overall performance and robustness of the presented

simulation results as a function of the ACC equipment rate. To this end, we consider the

cumulative travel time which has turned out to be a sensitive performance measure (cf.

Sec. 8.2). Again, we have used the scenario with a two-lane freeway and an on-ramp in

order to perform simulation runs. We have varied the ACC proportion between 0 and

50%.
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9.3 Cumulative Travel Time as Function of the ACC Proportion
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Figure 9.10: Dynamic capacity for a simulation scenario with a moving downstream jam front

(stop-and-go wave, cf. Fig. 8.14) for three different truck percentages. The autonomous on-board

detection of the regime ‘downstream jam front’ based on local information only does not increase

the dynamic capacity because of time delays in the real-time averaging. A timely detection of non-

stationary jam fronts requires non-local information, e.g., provided by inter-vehicle communication

or communication with roadside units (cf. Sec. 8.4).
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Figure 9.11: Cumulative travel time as a function of the proportion of ACC vehicles for the

‘standard’ ACC strategy matrix documented in Table 7.1 on page 118 (left diagram) and for a

strategy matrix with the settings λT = 0.8 and λa = 1.2 in the ‘bottleneck state’ and λT = 0.7 and

λa = 1.5 in the ‘downstream state’ (right). Both simulated systems show a similar monotonous

reduction until the value corresponding to free traffic is reached. Due to the smaller modification

factors λ, the strategy matrix in the right diagram is less effective in avoiding traffic jams. However,

the reductions are significant in both cases even for low ACC equipment rates.

The resulting realizations of the cumulative travel time for the simulation runs are shown

in the diagrams of Fig. 9.11. Additionally, we have calculated the average travel time and

its variation by the weighted linear regression with a smoothing width of δ = 0.05 with

respect to the proportion of ACC vehicles (cf. App. A). The left diagram in Fig. 9.11

refers to an ACC strategy matrix with ‘standard’ factors λ as listed in Table 7.1 on

page 118. The right diagram shows simulation results for an ACC strategy matrix with
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Figure 9.12: Cumulative travel time as a function of the proportion of ACC vehicles with uni-

formly distributed driving parameters of width ±20% (see main text), but for otherwise identical

simulation scenarios as in Fig. 9.11.

lower modification factors, namely, λT = 0.8 and λa = 1.2 for the ‘bottleneck state’ and

λT = 0.7 and λa = 1.5 for the ‘downstream state’.

Both diagrams show an analogous system behavior: The cumulative travel times decrease

consistently when increasing the fraction of ACC vehicles, until the travel time for free

traffic is reached. For the ‘standard’ ACC strategy, the traffic jam is completely avoided for

ACC percentages of at least 25%. As expected, the decrease of the cumulative travel time

is shifted towards higher ACC equipment rates in the case of a lower relative reduction

λT of the ACC time gap, given the same boundary conditions. However, the traffic flow

breakdown is avoided in the latter case for ACC proportions ≥ 35%. Remarkably, in both

scenarios the cumulative travel time already decreases significantly in both scenarios with

low equipment levels of only a few percent of ACC vehicles.

Furthermore, the influence of the stochasticity is significantly lower than in the measure-

ments of capacities: For example, in Fig. 9.11(left), the average cumulative travel time

drops by one standard deviation per 1% of ACC vehicles, while the corresponding ca-

pacities in Fig. 9.3 increase by one standard deviation per 5–10% of ACC vehicles. This

demonstrates the robustness of the proposed vehicle-based strategy for a better traffic per-

formance. Moreover, the high effectiveness even for low equipment levels promises good

chances for a successful introduction of such driving assistance systems.

Finally, we have investigated the effects of statistically distributed parameters in order

to represent individual differences in the driving behavior. Figure 9.12 shows simulation

results with uniformly distributed values of the parameters v0, T , a and b within an interval

of ±20% (cf. Sec. 9.1). Similar to the simulations shown in Fig. 9.11, we have obtained

a reduction of traffic congestion with an increasing ACC proportion which demonstrates

the robustness of the proposed adaptive driving strategy with respect to heterogeneous
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9.3 Cumulative Travel Time as Function of the ACC Proportion

driver-vehicle behavior. The somewhat higher total travel times compared to simulations

without statistically distributed parameters can be explained by the fraction of vehicles

driving with a lower desired velocity v0 or a larger time headway T . Note that, for

dense traffic conditions, these slower vehicles also determine the overall driving behavior

of driver-vehicle units with higher desired velocities.
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10 Summary and Conclusions

As mentioned in the Introduction, adaptive cruise control (ACC) systems are already avail-

able on the market. They will spread in the future and the next generation of ACC systems

is expected to extend their range of applicability to low speeds including ‘follow-to-stop’

functionality. This offers a realistic perspective for a decentralized traffic optimization

strategy based on ACC-equipped vehicles [60]. However, up to now, ACC systems were

mainly optimized for the user’s driving comfort and safety. With a growing level of distri-

bution, the design of ACC systems which also consider their impact on traffic dynamics

will be crucial for the next ACC generations.

In order to ensure that ACC systems are implemented in ways that improve, rather than

degrade, traffic conditions, we have proposed an extension of ACC systems towards a

traffic-adaptive cruise control with an actively jam-avoiding driving strategy. The main

innovation of the proposed driver assistance system is the extension of ACC systems (which

implement a continuous adaptation of the acceleration in response to the leading vehicle)

by an additional adaptation of the driving characteristics on a longer time scale, based on

information about the traffic situation. While the default operational state in free traffic

conditions corresponds to conventional ACC systems, the ACC control parameters are

automatically switched, according to the detected traffic situation, in a way that preserves

the individual settings and preferences of the different drivers. Since, most of the time,

the system operates in states corresponding to a conventional ACC system, the driving

comfort is only minimally diminished in favor of a higher traffic capacity.1

In order to resolve conflicting objectives between driving comfort and road capacity, the

strategy is based on a finite set of five different traffic situations which are associated with

different sets of ACC control parameters. This concerns the safety time gap, the maximum

acceleration and the comfortable deceleration. Based on local information, the proposed

system autonomously detects the traffic state and automatically adapts its driving style,

i.e., the acceleration characteristics of the underlying ACC system.

A concrete specification of a traffic-adaptive cruise control system has been presented. The

three components of the concept are the ACC itself, implemented in form of a car-following

model, an algorithm for the automatic real-time detection of the traffic situation based on

1In other (more abstract) words, the proposed concept of a traffic-adaptive driving strategy can be
considered as a novel and independent dimension in the functional state space of any ACC system with
a sufficiently large parameter space that allows for the implementation of different driving strategies.
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10 Summary and Conclusions

local information and a ‘strategy matrix’ which connects the driving characteristics (i.e.,

the parameters of the ACC system) to the actual traffic conditions. We integrated the

components in the microscopic simulation framework presented in Chap. 6 for simulating

‘in-the-loop’ the autonomous traffic-state detection (which requires surrounding traffic as

input) and the feedback of a given proportion of ACC-equipped vehicles on the overall

traffic dynamics.

As the impact of future driver assistance systems on the collective characteristics of traf-

fic flow can only be evaluated by means of computer simulations, the presented traffic

simulations serves as a first ‘proof of concept’. Our simulations were based on the as-

sumption that only a small fraction of ACC vehicles adapts their parameters according to

the proposed jam-avoiding driving strategy, while the manually controlled vehicles applied

a time-independent, constant driving style. The simulations of a freeway section with an

on-ramp showed that, reducing the time gap locally when passing a bottleneck and at

the downstream front of a traffic jam is sufficient to obtain efficient traffic flow, while

most of the time our proposed ACC system is driving with natural parameter settings.

As a bottleneck is defined by a local capacity reduction, the automatic reduction of the

time gap of ACC-equipped vehicles at a bottleneck manages to fill the ‘capacity gap’, at

least partially. As a consequence, the probability of a traffic flow breakdown is reduced.

Together with an increased dynamic capacity, this results on average in reduced queue

lengths during congested traffic. For example, the simulations of the afternoon rush-hour

on a German autobahn demonstrate that even an ACC equipment level of 10% improves

the traffic flow quality and reduces the travel times of the drivers in a relevant way.

We showed that the presented approach is also applicable to other kinds of bottlenecks

such as an uphill gradient. Furthermore, the presented results are largely independent of

details of the model and the heterogeneity of driver-vehicle units. Moreover, the traffic-

adaptive ACC has significantly positive effects both for traffic demands at the brick of

a breakdown and well beyond it. Our simulations showed that the proposed driving

strategy increase both the traffic stability and the dynamic capacity (i.e., the outflow from

congested traffic at the bottleneck which is typically lower than the maximum free flow).

A reduction of this capacity drop is crucial for a faster relieve from traffic congestion. A

systematic increase of the ACC equipment level for different simulation settings predicts a

monotonous decrease of the cumulative travel time. Note that this is crucial for a gradual

and successful introduction of the proposed ‘intelligent’ ACC system into the market.

A concrete vehicle implementation of a traffic-adaptive ACC-based system has already

been presented by Volkswagen within the German research initiative Invent. Current

research focusses on the implementation of the autonomous detection of different traffic

situations and transitions between driving strategies in real test vehicles. The ongoing

exchange between traffic engineers and traffic modelers will hopefully improve both our
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theoretical understanding and the applications for future advanced driver assistance sys-

tems.

Furthermore, the presented findings demonstrate the impact of the individual driver be-

havior on the overall traffic dynamics. This is also relevant for manual driving, because

human drivers generally respond to the local traffic conditions as well [125]. For example,

subconscious adaptation processes decrease the local capacity which has been interpreted

as ‘frustration effect’ [121]. Consequently, it would be desirable to teach driver behav-

iors that are beneficial to the overall system (such as attentive driving at bottlenecks and

prompt acceleration when leaving a jam) in driving lessons, in addition to established

topics such as trainings in economic and safe driving.

It has pointed out that the autonomous detection algorithm of ACC vehicles can be im-

proved by non-local information provided by inter-vehicle communication (IVC) and by

communication with stationary roadside units which are both promising vehicle-based ap-

plications for wireless communication technologies and a vehicle-infrastructure integration

in the context of Intelligent Transportation Systems (ITS). In order to evaluate these

future application scenarios combining car with information technology, advanced simu-

lation software will become more important as a tool in all stages of development. We

have integrated a communication module into our microscopic traffic simulation software

in order to simulate communication between vehicles. The software has been validated by

comparing the simulated connectivity with analytical calculations for the message propa-

gation probability. It has been shown that information about the position of jam fronts

could be reliably distributed even for vehicle equipment rates as low as 3%. This result

opens a promising perspective for advanced driver information services. The information

can also be used to extend the functionality of today’s ACC systems to intelligent as-

sistance systems which use non-local data as well. First real-world applications will be

demonstrated in the German ITS project Aktiv [149].
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A Data Smoothing with Weighted Linear Regression

When dealing with simulations, one often varies a single model parameter and plots it

against a second quantity resulting from the simulation run. Frequently, the simulation

result fluctuates because of stochastic elements in the model or in the initial and boundary

conditions, or simply because of the sensitive dependence of the result on the parameters

(deterministic chaos [105]). Since a single run takes a finite amout of time, it is dis-

advantageous to rerun the simulation frequently to derive the statistical properties of a

quantity’s variation. Furthermore, many simulation runs with the same parameters do not

provide additional insights if the ‘fluctuations’ are mainly due to the sensitive dependence

on varying parameter values. Here, we propose a statistical method that combines the

gradual change in the independent model parameter x with the derivation of the varia-

tion in the resulting fluctuating quantity y without running multiple simulations for the

same parameter value x. Applications of this smoothing method based on weighted linear

regression are, e.g., shown in Chap. 9. Figures A.1 and A.2 below give further examples.

Suppose we are fitting n data points {xi, yi}, i = 1, . . . , n to a linear model with two

parameters a and b,

ŷ(x) = ŷ(x; a, b) = a + bx. (A.1)

A global measure for the goodness of fit is the sum of squared errors yi − ŷ(xi), where the

values yi are measured, and the values xi of the dependent variable are known exactly.

The best-fitting curve for the linear regression can be obtained by the method of least

squares, i.e., by minimizing the error function

F(a, b) =

n∑

i=1

(yi − a − bxi)
2 (A.2)

with respect to the fit parameters a and b. The solution of the system of linear equations

is given by

b = b({xi, yi}) =
〈xy〉 − 〈x〉〈y〉
〈x2〉 − 〈x〉2 , (A.3)

a = a({xi, yi}) =
〈x2〉〈y〉 − 〈x〉〈xy〉

〈x2〉 − 〈x〉2 , (A.4)
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A Data Smoothing with Weighted Linear Regression

where the arithmetic average 〈z〉 of the measured data points {zi} is defined by

〈z〉 :=
1

n

n∑

i=1

zi. (A.5)

Let us now generalize the linear regression by using a locally weighted average

〈z〉(x) :=
n∑

i=1

w(x − xi) zi, (A.6)

where the weights w(x − xi) are defined through a sufficiently localized function K:

w(x − xi) =
K(x − xi)

n∑

j=1
K(x − xj)

. (A.7)

As the expression (A.6) is evaluated locally for any value x, the dependence on x is

transferred to the linear fit parameters (A.3) and (A.4) in addition to their dependence

on the set of data points {xi, yi}, i.e.,

a(x) = a(x; {xi, yi}), (A.8)

b(x) = b(x; {xi, yi}). (A.9)

Therefore, the weighted linear regression based on weights centered at x′ reads

ŷ(x, x′) = a(x′) + b(x′)x. (A.10)

For plotting y against x, the special case of centering the averages at x′ = x is relevant.

With a(x) = 〈y〉(x) − b(x)x, we obtain

ŷ(x, x) = a(x) + b(x)x = 〈y〉(x). (A.11)

Furthermore, the residual error yi−ŷ(xi) is also weighted by the discrete convolution (A.6),

resulting in

σ2(x) =
n∑

i=1

wi(x) [yi − a(x) − b(x)xi]
2 . (A.12)

Notice that the ‘error band’ σ(x) describes the standard deviation of variations of the quan-

tity y on length scales smaller than the width of the smoothing kernel K. For stochastic

simulations, this is simultaneously an estimate of the fluctuations for given values of x.

In the following, we illustrate this method using a Gaussian kernel with the standard
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Figure A.1: Demonstration of the proposed weighted linear regression method: the discrete data

set {xi, yi} is generated with a linear trend and some noise with a standard deviation represented

by dotted lines. The smoothing method calculates the locally fitted average trend and the variation

denoted as ‘error band’. The used Gaussian kernel contains only one single parameter, which is the

width δ. This width is varied in the displayed graphs. The value δ = 3 identifies the correct error

band of ±
√

4/3 almost exactly, but δ = 0.8 yields acceptable error bands as well, while δ = 0.3 is

too sensitive to stochastic fluctuations.

variation δ as weight function1,

K(x) = e−
x2

2δ2 . (A.13)

Notice that the definition (A.7) of the weighted average does not require the weighting

kernel to be normalized. The width of the Gaussian kernel δ is the only parameter of the

numerical smoothing method. Note that, again, we obtain the common linear regression

(A.1) in the limit δ → ∞.

In the following, we present the average 〈y〉(x) according to Eq. (A.11) and the variation

σ(x) according to Eq. (A.12) for two examples. In Fig. A.1, the data set {xi, yi} is

generated by a linear function y = x + ξ with uniformly distributed noise ξ ∼ G(−2, 2)

and xi ∈ [0, 10]. The width of the smoothing kernel determines how many neighboring data

points are taken into account for a specific x. The graphs show the resulting fit functions

1A symmetric exponential exp(−|x|), a triangular function, or even a rectangular function could serve as
weight function as well.
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A Data Smoothing with Weighted Linear Regression

and the variations (errors) for δ = 0.3, 0.8, 1.5, and 3.0. The variation of the data set

(displayed as shaded ‘error band’ in each graph) is based on the local neigborhood. Note

that this is a very efficient method to estimate statistical properties without carrying out

repeated simulation runs with identical parameter settings. Particularly, the half-width

of the error band is consistent with the true standard deviation σ ≈
√

4
3 and does not

depend on δ, which would be the case if the error band was determined by the local

variance
〈
(y − 〈y(x)〉)2

〉
(x).

In Fig. A.2, the underlying data set is generated by the s-shaped function y = tanh(x)+ ξ

with uniformly distributed noise ξ ∼ G(−0.4, 0.4) and x ∈ [−5, 5]. For δ = 0.5, the linear

regression is sufficiently localized to capture the s-shape trend of the data set. For δ = 2,

the smoothing interval is expanded, resulting in a primarily linear fit. Therefore, when

dealing with nonlinear trends, the choice of the smoothing kernel width δ is a trade-off

between smoothing fluctuations and capturing systematic local changes {xi, yi}. In any

case, the error band σ(x) directly gives the variation in the measurements without carrying

out simulation runs with the same parameter settings repeatedly.
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Figure A.2: Smoothed local (linear) trend and variation for synthetic data resulting from a tanh

with additional noise. The standard deviation ±0.4
√

1

3
is plotted by dotted lines. The s-shaped

curve is better captured by a more localized Gaussian kernel (width δ = 0.5) compared to a broader

smoothing width (δ = 2). The data variation is depicted by the shaded ‘error band’ (A.12).
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B The German Research Project INVENT

The German research initiative Invent1 was a four-year program running from 2001 till

2005. The project aimed at the development and deployment of novel technologies and

traffic concepts for vehicle-based intelligent transportation systems (ITS). Several pilot

applications and new functions for safer and more efficient future traffic systems were

demonstrated. Moreover, the stakeholders also identified and established new technological

standards.

Invent continued previous cooperative projects in traffic research such as Prometheus,

Motiv, and Sandy. The project was initiated and supported by the Federal Ministry for

Research and Education (BMBF), which covered 45% of the total investments of 76 Million

Euros. Apart from the big German automobile manufacturers, the project consortium

also included companies from the sectors of telecommunication, information technology,

electronics, and logistics. In addition to the industrial partners, research institutions and

universities contributed to the projects as subcontractors. The Chair for Traffic Modelling

and Econometrics of Dirk Helbing at Technische Universität Dresden contributed to the

project as subcontractor of Volkswagen.

As illustrated in Fig. B.1, the project was divided into three research areas, with eight

subprojects each: The project Traffic Management in Transport and Logistics designed,

e.g., solutions for dynamic planning of courier service delivery routes by taking into ac-

count the current traffic situation. The project Driver Assistance – Active Safety focused

on the development of a new generation of driver assistance systems using latest sensor

technologies for driver information, but also for intervening in the drive train by auto-

mated braking and steering in emergency situations. For example, assistance systems for

intersections, active pedestrian protection and lateral vehicle control were demonstrated.

The Traffic Management 2010 subproject comprised sophisticated traffic management

strategies for a new generation of navigation systems using machine intelligence and dy-

namic route guidance. Large-scale field tests and prototype applications were implemented

in Magdeburg and Munich. To this end, data from, e.g., traffic signals, road induction

loops, video monitoring, and floating car data were combined to obtain a reliable infor-

mation basis.

1The abbreviation Invent stands for ‘Intelligenter Verkehr und nutzergerechte Technik’, which is trans-
lated as ‘intelligent traffic and user-friendly technology’.
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B The German Research Project INVENT

Figure B.1: The research initiative Invent was organized into three projects focusing on safety,

traffic management, and logistics. These projects included eight subprojects each. The projects

focused on the development and investigation of new technologies that will help to avoid accidents

and reduce congestion. Parts of the thesis were developed in tight cooperation with Volkswagen

within the subproject Traffic Management 2010. More information is provided on the website

www.invent-online.de.

A more vehicle-based approach for an actively jam-avoiding strategy was considered in the

subproject called ‘Traffic Performance Assistance’.2 The goal was to operate traffic flow

more smoothly and to relieve traffic jams by means of advanced driver assistance systems.

These future systems are designed to collect and combine data dynamically to reconstruct

the actual traffic state. In addition, these assistance systems were considered to provide

inter-vehicle communication (IVC), thus allowing to inform and warn subsequent vehicles.

Hence, this subproject was intended as a platform for new applications of IVC technology.

Together with the TU Dresden, Volkswagen demonstrated how this traffic information can

be used for an anticipatory automated driving based on ACC systems [66]. The concept

and an evaluation of the system benefits are presented in the second part of this thesis.

2In German: ‘Verkehrsleistungsassistenz’ (VLA).
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C List of Symbols

Symbol Unit Annotation

ρ 1/km Traffic density

Q 1/h Traffic flow

V m/s, km/h Macroscopic average velocity

Vg m/s, km/h Average propagation velocity of stop-and-go waves

xα m Longitudinal position of driver-vehicle unit α

lα m Length of driver-vehicle unit α

vα m/s Velocity of driver-vehicle unit α

v̇α m/s2 Acceleration of driver-vehicle unit α, v̇ := dv
dt

∆vα m/s, km/h Velocity difference of driver-vehicle unit α to leader

∆t s Numerical update time

δ
Width of the smoothing kernel of the weighted linear re-

gression method (cf. App. A)

Intelligent Driver Model (Chapters 2 and 3)

v0 m/s, km/h Desired velocity

T s Parameter for the safety time gap

s0 m Minimum distance parameter

a m/s2 Parameter for the maximum acceleration

b m/s2 Parameter for the desired deceleration

bmax m/s2 Maximum (physical) braking acceleration
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C List of Symbols

Human Driver Model (Chapter 4)

Symbol Unit Annotation

T ′ s Reaction time

na 1 Number of anticipated vehicles

Vs 1 Relative distance error

rc 1/s Inverse time-to-collision error

τs, τ∆v s Perception error correlation times

Lane-Changing Model MOBIL (Chapter 5)

p 1 Politeness parameter

athres m/s2 Changing threshold parameter

abias m/s2 Bias for right lane

athres m/s2 Maximum safe deceleration

Traffic-Adaptive Cruise Control and Inter-Vehicle Communication

(Part II)

λT 1 Relative time gap parameter

λa 1 Relative acceleration parameter

λb 1 Relative deceleration parameter

α 1 ACC proportion in traffic flow

rmax m Broadcast range for distributing messages

ru m
Minimum required distance of message propagation in up-

stream direction

τ s
Relaxation time constant of the exponential moving aver-

age
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D List of Abbreviations

Abbreviation Annotation

ABS Anti-lock braking system

ACC Adaptive/Automatic/Advanced cruise control

ADAS Advanced Driver Assistance System

AHS Automated Highway System

DDE Delay-differential equation

DSRC Dedicated Short Range Communication

EMA Exponential moving average

ESC, ESP Electronic Stability Control, Electronic Stability Program

FC, FCD Floating Car, Floating Car Data

GUI Graphical user interface

GPS Global Positioning System

HDM Human Driver Model

IDM Intelligent Driver Model

IVC Inter-vehicle communication

ICT Information and Communication Technology

ITS Intelligent Transportation Systems (and Services)

LDW Lane departure warning system

MOBIL ‘Minimizing Overall Braking Induced by Lane Changes’

ODE Ordinary-differential equation

OVM Optimal Velocity Model

RSU Roadside unit

WLAN Wireless local-area networks

XML Extensible markup language
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[52] B. Kerner and P. Konhäuser (1994) Structure and parameters of clusters in traffic

flow. Physical Review E 50, 54–83.

[53] B. Kerner and H. Rehborn (1996) Experimental features and characteristics of traffic

jams. Physical Review E 53, R1297–R1300.

[54] B. Kerner and H. Rehborn (1996) Experimental properties of complexity in traffic

flow. Physical Review E 53, R4275–R4278.

[55] B. Kerner and H. Rehborn (1997) Experimental properties of phase transitions in

traffic flow. Physical Review Letters 79, 4030–4033.

[56] B. S. Kerner (2000) Theory of breakdown phenomenon at highway bottlenecks.

Transportation Research Record 1710, 136–144.

[57] B. S. Kerner, The Physics of Traffic (Springer, Heidelberg, 2004).

178



[58] B. S. Kerner, C. Demir, R. G. Herrtwich, S. L. Klenov, H. Rehborn, M. Aleksic, and

A. Haug, Traffic state detection with floating car data in road networks. In: Pro-

ceedings of the 8th international IEEE conference on Intelligent Transportation

Systems (Vienna, 2005), page 700.

[59] A. Kesting and M. Treiber (2007) How reaction time, update time and adaptation

time influence the stability of traffic flow. Computer-Aided Civil and Infrastruc-

ture Engineering 23, 125–137.

[60] A. Kesting, M. Treiber, S. Lämmer, M. Schönhof, and D. Helbing, Decentralized

approaches to adaptive traffic control and an extended level of service concept.

In: K. Gürlebeck and C. Könke (Editors), Proceedings of the 17th International

Conference on the Applications of Computer Science and Mathematics in Archi-

tecture and Civil Engineering (Bauhaus University Weimar, 2006).

[61] A. Kesting, M. Treiber, M. Schönhof, F. Kranke, and D. Helbing, Jam-avoiding

adaptive cruise control (ACC) and its impact on traffic dynamics. In: A. Schad-
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Kurzfassung

Kontext und Ausgangspunkt

Leistungsfähige und effiziente Verkehrssysteme bilden die Grundlage für eine stabile

wirtschaftliche Entwicklung unserer heutigen globalen Industriegesellschaften. Darüber

hinaus ist die individuelle Mobilität ein wichtiger Bestandteil persönlicher Freiheit und

Selbstverwirklichung. Der Hauptanteil der Verkehrsleistung wird von motorisiertem Indi-

vidualverkehr erbracht. Allgegenwärtige Verkehrsstaus verdeutlichen allerdings, dass die

Straßenkapazität begrenzt ist. Sie verursachen zudem beträchtliche volkswirtschaftliche

Schäden.1 Während die Verkehrsnachfrage nur indirekt beeinflusst werden kann (v.a.

durch politische Steuerung), erfordert ein Ausbau des Straßennetzes langfristige Planungen

sowie hohe Investitions- und Unterhaltskosten. Zudem ist in dicht besiedelten Großräumen

der Ausbau des Straßennetzes oft weder möglich noch politisch erwünscht. Daher kommt

einer effizienten Nutzung der vorhandenen Straßeninfrastruktur eine entscheidende Bedeu-

tung zu.

Die Vision der Verkehrstelematik besteht seit langem darin, diese Effizienz durch eine

automatisierte Fahrzeugsteuerung zu erreichen. Durch Fortschritte in den Bereichen der

Sensor-, Steuerungs- und Kommunikationstechnologie ist automatisiertes Fahren – zu-

mindest auf Autobahnen und innerhalb einer Spur – schon heute Realität: Adaptive-

Cruise-Control-Systeme (ACC)2 greifen in die Fahrzeugkontrolle ein und regeln das

Beschleunigen und Bremsen. Über einen Radarsensor wird der Abstand zum Vorder-

fahrzeug gemessen und in Kombination mit den Fahrzeuggeschwindigkeiten die notwendige

Beschleunigung berechnet, die für das Einhalten einer vom Benutzer vorgegebenen Wun-

schgeschwindigkeit bzw. eines zeitlichen Abstands zum Vorderfahrzeug notwendig ist.

Heutige ACC-Systeme sind für ein sicheres und komfortables Fahren auf Autobahnen bei

Geschwindigkeiten über 30 km/h ausgelegt. Bereits die nächste Generation wird jedoch

im gesamten Geschwindigkeitsbereich (inkl. Stop-and-go-Verkehr) anwendbar sein.3

1Die Europäische Kommission hat die volkswirtschaftlichen Kosten durch Zeitverluste und Mehrverbrauch
von Kraftstoff auf 0,5 % des Bruttosozialprodukts des Jahres 2001 geschätzt und prognostiziert aufgrund
einer Steigerung der globalen Verkehrsnachfrage eine Verdopplung der Kosten bis zum Jahr 2010.

2Deutsch:
”
adaptiver Geschwindigkeitsregler“ oder

”
radargestützte Abstandsregelung“.

3Eine ACC-Implementierung in einem Forschungsfahrzeug wurde von der Volkswagen AG in Zusamme-
narbeit mit der TU Dresden im Rahmen des Forschungsprojekts Invent (

”
Intelligenter Verkehr und

nutzergerechte Technik”) demonstriert.
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Fragestellung und Beitrag

In der Arbeit wird ein neues verkehrstelematisches Konzept für ein verkehrseffizientes

Fahrverhalten entwickelt und als dezentrale Strategie zur Vermeidung und Auflösung

von Verkehrsstaus auf Richtungsfahrbahnen vorgestellt. Die operative Umsetzung erfolgt

durch ein ACC-System, das um eine, auf Informationen über die lokale Verkehrssituation

basierende, automatisierte Fahrstrategie erweitert wird. Die Herausforderung bei einem

Eingriff in das individuelle Fahrverhalten besteht – unter Berücksichtigung von Sicherheits-

, Akzeptanz- und rechtlichen Aspekten – im Ausgleich der Gegensätze Fahrkomfort und

Verkehrseffizienz. Während sich ein komfortables Fahren durch große Abstände bei gerin-

gen Fahrzeugbeschleunigungen auszeichnet, erfordert ein verkehrsoptimierendes Verhal-

ten kleinere Abstände und eine schnellere Anpassung an Geschwindigkeitsänderungen der

umgebenden Fahrzeuge.

Als allgemeiner Lösungsansatz wird eine verkehrsadaptive Fahrstrategie vorgeschlagen, die

ein ACC-System mittels Anpassung der das Fahrverhalten charakterisierenden Parameter

umsetzt. Die Wahl der Parameter erfolgt in Abhängigkeit von der lokalen Verkehrssitua-

tion, die auf der Basis der im Fahrzeug zur Verfügung stehenden Informationen automa-

tisch detektiert wird. Durch die Unterscheidung verschiedener Verkehrssituationen wird

ein temporärer Wechsel in ein verkehrseffizientes Fahrregime (zum Beispiel beim Heraus-

fahren aus einem Stau) ermöglicht.

Machbarkeit und Wirkungspotenzial der verkehrsadaptiven Fahrstrategie werden in der

Dissertation im Rahmen eines mikroskopischen Modellierungsansatzes simuliert und

hinsichtlich der kollektiven Verkehrsdynamik, insbesondere der Stauentstehung und

Stauauflösung, auf mehrspurigen Richtungsfahrbahnen bewertet. Die durchgeführte Mod-

ellbildung, insbesondere die Formulierung eines komplexen Modells des menschlichen

Fahrverhaltens, ermöglicht eine detaillierte Analyse der im Verkehr relevanten kollek-

tiven Stabilität und einer von der Stabilität abhängigen stochastischen Streckenkapazität.

Ein tieferes Verständnis der Stauentstehung und -ausbildung wird durch das allgemeine

Konzept der Engstelle erreicht. Dieses findet auch bei der Entwicklung der Strategie für

ein stauvermeidendes Fahrverhalten Anwendung.

In der Arbeit wird die stauvermeidende und stauauflösende Wirkung eines individuellen,

verkehrsadaptiven Fahrverhaltens bereits für geringe Ausstattungsgrade nachgewiesen.

Vor dem Hintergrund einer zu erwartenden Verbreitung von ACC-Systemen ergibt sich

damit eine vielversprechende Option für die Steigerung der Verkehrsleistung durch ein

teilautomatisiertes Fahren. Der entwickelte Ansatz einer verkehrsadaptiven Fahrstrate-

gie ist unabhängig vom ACC-System. Er erweitert dessen Funktionalität im Hinblick auf

zukünftige, informationsbasierte Fahrerassistenzsysteme um eine neue fahrstrategische Di-

mension. Die lokale Interpretation der Verkehrssituation kann neben einer verkehrsadap-
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tiven ACC-Regelung auch der Entwicklung zukünftiger Fahrerinformationssysteme dienen.

Ergebnisse der Arbeit

Die Arbeit gliedert sich in zwei Hauptteile. Gegenstand des ersten Teils ist eine

mikroskopische Theorie der Verkehrsdynamik. Es werden Modelle zur Beschreibung des

individuellen Beschleunigungs-, Brems- und Spurwechselverhaltens formuliert und die da-

raus resultierende kollektive Verkehrsdynamik und Stabilität numerisch untersucht. Die

entwickelten Modelle und Simulationswerkzeuge bilden die methodischen Voraussetzun-

gen für den zweiten Teil der Arbeit, in dem ein Konzept für eine verkehrsadaptive

Regelungsstrategie von ACC-Systemen vorgestellt wird und deren Auswirkungen auf die

Verkehrsdynamik auf Autobahnen mittels Verkehrssimulationen untersucht und bewertet

werden.

Das mikroskopische Fahrzeugfolgemodell Intelligent Driver Model (IDM)4 dient als Aus-

gangspunkt der Arbeit. Aus der Literatur ist bekannt, dass das IDM alle wesent-

lichen Phänomene der Verkehrsdynamik auf Autobahnen reproduziert. Darüber hin-

aus ermöglichen die leicht zu interpretierenden Modellparameter des IDM eine intu-

itive Charakterisierung verschiedener Fahrzeugklassen (wie PKW und LKW) sowie unter-

schiedlichen Fahrverhaltens. Bei der Modellierung einer verkehrsadaptiven Longitudinal-

steuerung mittels eines ACC-Systems erweist sich diese Eigenschaft als vorteilhaft.

Mikroskopische Modellkalibrierung und -validierung

Für ein grundsätzliches Verständnis der Eigenschaften des IDM werden die Dynamik

einzelner Fahrzeuge, die Gleichgewichtseigenschaften eines Verkehrsflusses identischer

Fahrzeuge sowie das Auftreten kollektiver Instabilitäten untersucht. In der Literatur ist

das Verkehrsmodell IDM anhand makroskopischer Verkehrsgrößen, welche sich z.B. aus

empirischen Fluss-Dichte-Beziehungen ergeben, kalibriert worden. In der vorliegenden

Arbeit wird eine mikroskopische Kalibrierungs- und Validierungsmethode für Fahrzeug-

folgemodelle vorgestellt, um eine simulierte Trajektorie bestmöglich an eine empirisch

gemessene Trajektorie anzupassen. Für die numerische Lösung dieses nichtlinearen Op-

timierungsproblems wurde ein genetischer Algorithmus entwickelt und es wurden drei

verschiedene Zielfunktionen formuliert, um die Sensitivität der Kalibrierungsresultate be-

werten zu können. Das IDM konnte das individuelle Fahrverhalten reproduzieren. Die

anhand verschiedener Trajektorien und Optimierungskriterien kalibrierten Modellparam-

eter lagen im erwarteten Wertebereich. Die Kalibrierungsfehler betrugen zwischen 10

4M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic

simulations, Physical Review E 62, 1805 -1824 (2000).
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und 30 %, wovon der größte Teil auf dynamische Anpassungsprozesse des Fahrers (sog.

intra-driver variability) zurückgeführt werden konnte. Die Unterschiede zwischen den

kalibrierten und validierten Modellparametern waren deutlich kleiner und ließen sich im

wesentlichen durch die unterschiedlichen Fahrstile verschiedener Fahrer (sog. inter-driver

variability) erklären.

Ein Modell des menschlichen Fahrverhaltens

In der Kalibrierungsstudie wurde gezeigt, dass das IDM das menschliche Fahrverhalten

auch in Einzelsituationen befriedigend beschreibt. Hinsichtlich der offensichtlichen oper-

ativen Unterschiede zwischen einem autofahrenden Menschen und einem simplifizieren-

den Fahrzeugfolgemodell, welches instantan auf lediglich das unmittelbare Vorderfahrzeug

reagiert, stellt sich die grundsätzliche Frage nach einer theoretischen Begründung, die auch

für die Modellierungsannahmen im zweiten Teil der Arbeit relevant ist.

In der Arbeit wird mit dem Human Driver Model (HDM) ein komplexes mikroskopisches

Verkehrsmodell formuliert, das menschliche Eigenschaften explizit berücksichtigen soll.

An erster Stelle ist eine nicht zu vernachlässigende menschliche Reaktionszeit zu nen-

nen, die in der mathematischen Formulierung für die Beschleunigungsfunktion zu Delay-

Differenzialgleichungen führt. Aus der Literatur ist bekannt, dass menschliche Reaktion-

szeiten, die in der Größenordnung von einer Sekunde liegen, zu sehr instabilem Model-

lverhalten führen. Weiterhin wird die Stabilität durch menschliche Wahrnehmungs- und

Schätzfehler reduziert, die im HDM durch Wiener-Prozesse beschrieben werden und zu

stochastischen Modellelementen führen. Zur Stabilisierung des Fahrverhaltens werden

zwei Antizipationsmechanismen betrachtet: Der modellierte Fahrer reagiert nicht nur auf

das unmittelbare Vorderfahrzeug, sondern auch (mit abnehmender Gewichtung) auf die

Fahrzeuge davor (
”
räumliche Antizipation“), womit das HDM über die Näherung der

einfachen Fahrzeugfolgemodelle hinausgeht. Zweitens wird modelliert, dass der men-

schliche Fahrer bei seiner Wahrnehmung des Abstandes zum nächsten Fahrzeug um seine

Reaktionszeit weiß und die Verkehrssituation entsprechend extrapoliert (
”
zeitliche An-

tizipation“).

Die aus dem Zusammenwirken der verschiedenen Modellelemente resultierenden Sta-

bilitätseigenschaften des Modells wurden anhand von Fahrzeugkolonnen unter dem Ein-

fluss endlicher Störungen numerisch untersucht. Die kollektive Stabilität wird dabei vor

allem durch drei charakteristische Zeiten bestimmt, deren Einflüsse und Wechselwirkun-

gen erstmals durch unabhängige Parameter analysiert wurden. Neben der expliziten

Reaktionszeit der Fahrer, die in erster Linie eine physiologische Größe ist, wird die kollek-

tive Stabilität durch eine endliche Adaptionszeit an Geschwindigkeitsänderungen deter-

miniert, die sich aus der endlichen Beschleunigungsfähigkeit der Fahrzeuge und Beschle-
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unigungswilligkeit der Fahrer ergibt. In Simulationen wurden beide Instabilitätsmecha-

nismen untersucht und qualitative Unterschiede nachgewiesen. Vergleichsweise niedrige

Fahrzeugbeschleunigungen verursachen eine kollektive Instabilität durch die Ausbildung

langwelliger Störungen, während endliche Reaktionszeiten im Zusammenspiel mit höheren

Beschleunigungen zunächst kurzwellige Störungen hervorrufen. Beide Instabilitätsmecha-

nismen können aber zur Ausbildung von (langwelligen) Stop-and-go-Wellen führen.

Weiterhin konnte gezeigt werden, dass in Gegenwart einer nicht zu vernachlässigen-

den Reaktionszeit eine Vergrößerung der Geschwindigkeitsadaptionszeit durch kleinere

Beschleunigungen die kollektive Stabilität erhöhen, also eine langsamere Anpassung zur

Stabilisierung von zeitverzögerten Systemen beitragen kann. Eine endliche Integrationss-

chrittweite, die ebenfalls eine verzögerte Anpassung bewirkt, kann als dritte, unabhängige

Zeit aufgefasst werden. Obwohl sie nur eine Hilfsgröße für die numerische Integration der

Differenzialgleichungen ist, wird sie in einigen Modellen in der Literatur mit der Reaktions-

zeit identifiziert. Die Simulationen zeigen, dass der Einfluss der Integrationsschrittweite

jedoch nur dem einer halben Reaktionszeit entspricht.

Weiterhin wurde die makroskopische Verkehrsdynamik unter dem Einfluss von Reaktions-

zeit und Antizipation in einem komplexen Szenario mit einer
”
flusserhaltenden Eng-

stelle“ (z.B. einer Baustelle) in einem offenen System simuliert. Im Modell konnten

verschiedene raumzeitliche Stauzustände, die aus der Literatur bekannt sind, durch eine

Variation intrinsischer Modellparameter für die Reaktionszeit und räumliche Antizipation

nachgewiesen werden. Die Simulationen zeigen, dass sich die menschliche Reaktionszeit

in ihrer kollektiven Wirkung durch die eingeführten Antizipationsmechanismen quantita-

tiv kompensieren lässt. Damit lässt sich im Rahmen des vorgestellten Modells erklären,

warum die auf simplifizierten Annahmen beruhenden Fahrzeugfolgemodelle in der Lage

sind, die empirischen Verkehrsphänomene quantitativ zu beschreiben.

Modellierung von Spurwechselentscheidungen

Die mikroskopische Simulation des Autobahnverkehrs erfordert neben der Beschreibung

des spurgebundenen Brems- und Beschleunigungsverhaltens die explizite Modellierung

von Spurwechseln. Erst die Möglichkeit zum Überholen von langsameren Fahrzeugen

erlaubt eine realistische Berücksichtigung von Effekten, die durch heterogene Fahrertypen

und Fahrzeugklassen hervorgerufen werden. Mit dem Modell MOBIL5 wird ein allge-

meines Entscheidungsmodell formuliert, das sowohl erzwungene als auch freie Spurwechsel

beschreibt. Das Modell basiert auf einem Motivations- und einem Sicherheitskriterium.

Die Abwägung zwischen dem zu erwartenden eigenen Vorteil in der neuen Spur und dem

Risiko, das durch einen Spurwechsel hervorgerufen wird, erfolgt auf der Basis von longitu-

5Das Akronym steht für
”
Minimizing Overall Braking Induced by Lane Changes“.
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dinalen Beschleunigungen, die sich wiederum mit Hilfe eines longitudinalen Verkehrsmod-

ells berechnen lassen. Diese
”
Metaformulierung“ des diskreten Entscheidungsproblems

ermöglicht eine einfache und konsistente Modellformulierung, bei der die Eigenschaften

des Longitudinalmodells auch in die Spurwechselentscheidung einfließen.

Der Spurwechselalgorithmus MOBIL geht über Modelle aus der Literatur hinaus, indem er

neben dem individuellen Vorteil auch die Auswirkungen auf die durch den Spurwechsel bee-

influssten nächsten Nachbarn berücksichtigt. Dieser Abwägungsprozess wird anschaulich

durch einen
”
Höflichkeitsparameter“ beschrieben. Der Einfluss der Modellparameter für

symmetrische und asymmetrische Spurwechselregeln (letztere mit einem Rechtsfahrgebot

und einem Rechtsüberholverbot) auf das Spurwechselverhalten wurde in Verkehrssimula-

tionen untersucht. Die resultierenden Spurwechselraten als Funktion der Verkehrsdichte

liegen in einer realistischen Größenordnung und stimmen semiquantitativ mit empirischen

Untersuchungen überein.

Verkehrsadaptive Strategie für ACC-Systeme

Im zweiten Teil der Arbeit wird ein Konzept für zukünftige ACC-Systeme vorgestellt, das

neben dem individuellen Fahrkomfort und der Verkehrssicherheit als drittes Kriterium

eine positive Beeinflussung der kollektiven Verkehrsleistung berücksichtigt. Während

ein komfortorientiertes Fahrverhalten mit geringen Fahrzeugbeschleunigungen bei großen

Abständen umgesetzt werden kann, ist ein auf Verkehrseffizienz ausgelegtes Fahrver-

halten mit kleineren Zeitlücken und höheren Beschleunigungen verbunden. Um diese

gegensätzlichen Zielkriterien miteinander vereinbaren zu können, wird eine verkehrsadap-

tive Regelungsstrategie für ACC-Systeme vorgeschlagen und im Rahmen von mikroskopis-

chen Simulationen auf ihre kollektive Wirkung untersucht. Das Konzept umfasst als Mod-

ellkomponenten eine verkehrszustandsabhängige Fahrstrategie, ein autonomes Detektions-

modell zur Bestimmung der lokalen Verkehrssituation und eine Umsetzung der Fahrstrate-

gie in einem ACC-Modell.

Die entwickelte verkehrsadaptive Fahrstrategie unterscheidet fünf Verkehrszustände, deren

unterschiedliche Zielsetzungen durch eine Anpassung des aktuellen Fahrverhaltens in Form

der folgenden Fahrstrategiematrix umgesetzt werden: Im Zustand
”
Freier Verkehr“ ist das

Zielkriterium ein komfortabler Fahrstil, der von den benutzerdefinierten Standardeinstel-

lungen des ACC-Systems gewährleistet wird. Bei der
”
Annäherung an einen Stau“ soll so

frühzeitig und sanft wie möglich gebremst werden, um das Risiko von Auffahrunfällen zu

reduzieren. Im Zustand
”
Stau“ wird ebenfalls die Standardeinstellung des ACC-Systems

gewählt, weil ein Fahrer im Stau die Verkehrsleistung nicht direkt beeinflussen kann. Dage-

gen kommt es bei der
”
Ausfahrt aus dem Stau“ darauf an, dass die Fahrzeuge rechtzeitig

und zügig beschleunigt werden, um den Ausfluss aus dem Stau zu erhöhen. Im Hinblick
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auf das Kriterium einer Steigerung der Verkehrsleistung ist darüber hinaus das Fahrverhal-

ten beim Passieren einer
”
Engstelle“ von Bedeutung. Da eine lokale Kapazitätsreduktion

das definierende Merkmal einer Engstelle ist, ist das Ziel in dieser Verkehrssituation eine

Abschwächung des Engpasses durch ein aufmerksames Fahren bei kleineren Zeitabständen.

Die verkehrsabhängige Fahrstrategie erfordert eine autonome Bestimmung des lokalen

Verkehrszustandes im Fahrzeug. Das formulierte Detektionsmodell enthält Kriterien

für die eingeführten Verkehrszustände sowie eine Heuristik für das korrespondierende

Entscheidungsproblem bei der Auswahl eines Verkehrszustandes. Die Kriterien basieren

auf lokalen, im Fahrzeug zur Verfügung stehenden Informationen wie der Zeitreihe der

Geschwindigkeit oder der georeferenzierten Fahrzeugposition in Verbindung mit einer digi-

talen Karte. Die digitale Karte ist um Attribute infrastruktureller Engstellen, wie z.B. Auf-

und Abfahrten von Autobahnen, Steigungsstrecken oder Baustellen, ergänzt, da aus em-

pirischen Untersuchungen von Verkehrsstaus bekannt ist, dass die meisten Verkehrszusam-

menbrüche an diesen stationären Engstellen lokalisiert sind.

In Abhängigkeit vom lokal detektierten Verkehrszustand wird die zugehörige Fahrstrate-

gie von einem ACC-Modell umgesetzt. Formal entspricht dies einem Fahrzeugfolgemod-

ell mit einer automatischen, ereignisgesteuerten Wahl der Modellparameter, die damit

zeitabhängig werden. Die Anpassung der Modellparameter ist in der Fahrstrategiematrix

relativ formuliert, um individuelle ACC-Einstellungen des Fahrers zu berücksichtigen.

Analyse und Bewertung in der mikroskopischen Simulation

Die Auswirkungen eines (hypothetischen) Anteils von ACC-Fahrzeugen auf die kollektive

Verkehrsdynamik kann nur im Rahmen von Simulationen untersucht werden. Die Bewer-

tung der vorgestellten verkehrsadaptiven ACC-Fahrstrategie mit ihrer fahrzeugbasierten

Verkehrszustandsdetektion erfordert einen mikroskopischen Simulationsansatz. Mit Hilfe

der entwickelten Software wurden mehrspurige Streckenabschnitte mit verschiedenen En-

gstellen und Randbedingungen simuliert. Für eine realistische Wahl der stromaufwärti-

gen Randbedingungen des offenen Systems wurden u.a. zeitabhängige Detektordaten der

deutschen Autobahn 9 (München-Salzburg) für den Verkehrsfluss und einen variablen

LKW-Anteil benutzt.

Im Rahmen der Simulation von Verkehrszusammenbrüchen konnte bereits ab einem

ACC-Anteil von zehn Prozent eine positive Wirkung der verkehrsadaptiven Fahrstrate-

gie beobachtet werden. Abhängig vom ACC-Ausstattungsgrad bewirkt die Fahrstrategie

im Verkehrszustand
”
Passieren einer Engstelle“ eine Reduzierung der Engpassstärke und

damit eine Verzögerung bzw. Verhinderung des Verkehrszusammenbruchs. Ein Wechsel

des Fahrregimes im Zustand
”
Ausfahrt aus dem Stau“ bewirkt einen höheren Ausfluss

bei geringeren Rückstaulängen und damit eine schnellere Stauauflösung. Zur Bewertung
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wurde die aktuelle Reisezeit (als wichtiges Kriterium für die Verkehrsteilnehmer) sowie

die kumulierte Reisezeit (als Indikator für die Systemleistung) herangezogen. Eine sys-

tematische Untersuchung der kumulierten Reisezeiten ergab einen monoton abnehmenden

Zusammenhang bei zunehmendem Anteil von ACC-Fahrzeugen, wodurch eine gradu-

elle Verbesserung der Verkehrseffizienz auch bei kleinen (und damit realistischen) ACC-

Ausstattungsgraden nachgewiesen wurde.

Für eine systematische Untersuchung der Dynamik wurden die externen Parameter wie

der ACC-Anteil, der LKW-Anteil sowie die Parametrierung der Fahrstrategiematrix vari-

iert, wobei die maximale freie Kapazität im freien Verkehr und die dynamische Kapazität,

die den Ausfluss aus dem Stau beschreibt, als relevante dynamische Größen betrachtet

wurden. Die freie Kapazität bestimmt den maximal möglichen Durchsatz des Systems,

bis es zum Verkehrszusammenbruch kommt. Als dynamische Größe hängt sie von der

kollektiven Stabilität ab und ist damit von der statischen Streckenkapazität zu unter-

scheiden. Zur Verdeutlichung der stochastischen Natur des Verkehrszusammenbruchs

wurde die maximale Kapazität als Zufallsvariable betrachtet, die sich in guter Näherung

durch eine Gaußverteilung beschreiben ließ. Die Varianz hängt von der Heterogenität

des Fahrer-Fahrzeug-Ensembles ab, wobei die Berücksichtigung unterschiedlicher Fahr-

zeugklassen einen größeren Einfluss hatte als die Berücksichtigung statistisch verteilter

Modellparameter innerhalb der Fahrzeugklassen.

Die Grenzen der autonomen Verkehrszustandsdetektion wurden im Rahmen der Si-

mulationen identifiziert. Auf der Basis der lokal verfügbaren Informationen können

propagierende Staufronten (z.B. Stop-and-go-Wellen) nicht zuverlässig für eine rechtzeit-

ige Anpassung der Fahrstrategie detektiert werden. Daher wird eine Erweiterung des

Detektionsmodells um nichtlokale Informationen diskutiert, welche in der Zukunft z.B.

durch eine Kommunikation zwischen Fahrzeugen (inter-vehicle communication) oder mit

stationären Sendern (sog. road-side units) zur Verfügung gestellt werden können. In einer

Machbarkeitsstudie wurde die Informationsgenerierung und eine ausreichend schnelle In-

formationsübermittlung, auch unter den Einschränkungen, dass nur sehr wenige Fahrzeuge

mit einem Kommunikationsmodul ausgestattet sind und die Senderreichweite begrenzt ist,

demonstriert, wobei die ausgestatteten Fahrzeuge in der Gegenrichtung als dynamische

Relaisstationen genutzt wurden (store-and-forward), um eine ausreichende Konnektivität

zu gewährleisten. Eine Detektion, Interpretation und Voraussage der lokalen Verkehrssi-

tuation in Verbindung mit zukünftigen Kommunikationstechnologien kann neben einer

verkehrsadaptiven ACC-Regelung auch der Entwicklung zukünftiger Fahrerinformation-

ssysteme dienen. Eine Demonstration beider Anwendungsebenen ist von der Volkswagen

AG im Rahmen des Forschungsprojekts Aktiv6 geplant.

6Das Akronym steht für
”
Adaptive und kooperative Technologien für den intelligenten Verkehr“.
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