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1 Introduction

1.1 Semiconductor nanoparticles

Semiconductor and metal nanoparticles are in the focus of scientific research: It has been

shown that size of these particles determines their properties [1, 2]. Because their unique

electronic nature privileges them for a large variety of potential applications, e. g., biological

labels [3, 4, 5], displays [6], solar cells [7, 8] and quantum-dot lasers [9, 10]. Examples of

such systems are quantum-dots embedded in solid-state structures, particles on surfaces or

clusters in the gas phase.

Beside zinc oxide and zinc sulphide the cadmium chalcogenides are the prototypical

systems of the II–VI semiconductor compounds. Already for some hundred years cadmium

sulphide (CdS) has been used as a pigment because of its colour. Solid CdS is a yellow

material, due to its band gap of 2.58 eV [11]. It provides useful properties for optoelectronic

devices, such as photosensitive and photovoltaic devices or as photoresistors [12].

At the nanometre scale these materials are at an intermediate level between atomic,

molecular and bulk revealing new physical properties. In 1982 Henglein observed a blue

shift in the absorption spectra of a colloidal solution of CdS with respect to the bulk band

gap [13]. One year later, this effect was explained by Brus, who discovered its quantum

mechanical nature [14]. Much progress has been achieved in the controlled synthesis of such

nanoparticles with a narrow size distribution [15]. In 1993 Murray, Noris and Bawendi

developed a method, which allowed the size selective synthesis of cadmium chalcogenide

nanoparticles on a macroscopic scale [16]. This method opened the field for detailed inves-

tigations of the properties of these nanoparticles, as well as their application [1, 2].

In the size regime below approximately 10 nm the macroscopic physical properties of

nanoparticles and nanocrystals are dominated by quantum mechanical rules. The spatial

restriction of nanoparticle affects the wavelength of the electrons, which is reduced com-

pared to the bulk. This effect is referred as quantum-confinement or quantum-size effect

(QCE/QSE). The simplest model of this effect is the non-atomistic quantum mechanical

problem of the ”particle in a box”. This is the basis for the effective mass approximation for

the description of the electronic structure of these nanoparticles [14, 17, 18, 19, 20].

The second important effect of clusters, in particular of small nanoparticles, is the surface

effect: The number of surface atoms is a large fraction of the total number of atoms in the

nanoparticles. Even though the surface atoms are responsible for distinct contributions to

the free energy and, thus, large changes in thermodynamic characteristics [21, 22]. In solu-
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tion, the chemistry of the surface is determined by protective ligand. The optical processes

of such semiconductor nanoparticles, especially the technologically interesting luminescence

properties, are found to be affected by the structure of the surface [23, 24].

For instance dangling bonds partially or fully quench the luminescence quantum yield.

This effect could be of interest for an application in solar cells. In contrast, a maximum

luminescence quantum yield is obtained within a defect free surface, such as reported for

single nanoparticles [25, 26, 27] and embedded structures, viz. core/shell systems [28, 29,

30, 31].

1.2 The Role of Theory

Theoretical studies help to understand and to overcome some of the problems in the pro-

duction of semiconductor nanoparticles and in interpretation of their properties. An im-

portant part of the bulk properties and crystal structures is known through experiments.

Detailed information of the atomic surface structure has to be, however, derived largely from

quantum-mechanical models. The spectrum of applicable theoretical methods for atomic

structure calculations ranges from high-accuracy techniques based on configuration interac-

tions (CI) over the large realm of Hartree-Fock (HF) and density-functional theory (DFT)

based methods to empirical force fields. Each class of methods has its particular domain

of applicability, given by the system size, i. e., the number of basis functions, which can

comfortably be handled at a desired level of accuracy.

Surfaces and interfaces are in general more complex than highly symmetric bulk systems

and, therefore, have to be handled as large cluster models or periodic boundary conditions.

This fact curtails the applicability of high-accuracy wavefunction and density-functional

based methods alike. Classical potentials, on the other hand, allow the investigation of

mesoscopic phenomena like crack propagation or surface roughening, but cannot provide

a description of the electronic properties of the material. A compromise of the medium-

accuracy level, which provides a quantum-mechanical description of chemical bonding suffi-

ciently accurate to investigate the electronic and atomic structure of large-scale bulk, surface

and interface systems, are the tight-binding methods, such as the one employed in this work.

They may also give insights into system evolution and dynamics, e. g., during growth pro-

cesses and phase transitions.

1.3 Outline

The subject of the present work is the investigation of the effects of surface saturation on the

properties of CdS nanoparticles as one representative of the II-VI semiconductor systems.

Due to the reasons given above, a particular density-functional based tight-binding method
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(DFTB) is employed. The work is divided into two major parts: The first is addressed to the

methodological and theoretical framework, while the second part focuses in the applications.

The calculation of the electronic and optical properties of CdS nanoparticles requires an

accurate description of the unoccupied states. Therefore, the goal of part one is to systemat-

ically improve the DFTB formalism in the context of density-functional theory to achieve an

improved charge-transfer description. The standard DFTB scheme uses a non-self-consistent

solution of the Kohn-Sham equations, which excludes a recoupling of the density to wave-

functions. Additionally, density fluctuations have been considered by a self-consistent charge

(SCC-DFTB) correction scheme using the non-self-consistent DFTB potentials. Hence, one

objective of this thesis is to extend this standard DFTB scheme systematically by a self-

consistent field (SCF) treatment within applying the DFTB approximations.

The background of density-functional theory is presented in Chapter 2 and the DFTB

formulation is derived directly in Chapter 3. Time-dependent density-functional linear re-

sponse theory (TD-DFRT) and the therefrom derived efficient calculation scheme – the

γ−approximation – are introduced in short. The newly implemented extension of the stan-

dard DFTB method into an SCF formulation is given subsequently in Chapter 4.

Chapter 5 addresses questions related to the accuracy of the electronic structure descrip-

tion within the DFTB approximations. It will be shown that the standard DFTB scheme

and its extension SCC-DFTB only calculate the occupied states correctly, but they fail for

the unoccupied states. To correct this, the new SCF-DFTB is tested on CdS structures and

compared to SCF-DFT calculations.

In the second part of this thesis, the DFTB scheme is applied to several problems of

interest focusing on CdS nanoparticles. Chapter 6 addresses to structural aspects of the

nanoparticles, especially their surface saturation. First, a saturation scheme is developed

and tested. Then it is applied to generate the structures of saturated and non-saturated

nanoparticles. These are subsequently investigated with the standard DFTB method using

geometry optimisation techniques and molecular-dynamics simulations.

In the following two chapters, the properties of CdS nanoparticles with respect to quan-

tum size effects (QSE) are focused. While the basic physics is believed to be largely un-

derstood, the dominating influence of the surface is lacking in these models. To shed light

upon this, SCF-DFTB is applied to study the electronic structure of these nanoparticles,

especially that of surface. This includes charge distributions, electronic density of states

(DOS), HOMO-LUMO gap energies∗ and spatial distribution of the frontier orbitals, and

finishes with the investigation of defects of the surface saturation (dangling bonds).

The optical properties of the CdS nanoparticles are investigated in Chapter 8. For the

efficient calculation of the excitation energies and oscillator strengths of the relatively large

structures the Γ−approximation is applied. Using this scheme the effect of surface saturation

∗The HOMO-LUMO gap energy ∆G is defined as energy difference of the lowest unoccupied molecular
orbital (LUMO) εLUMO and the highest occupied molecular orbital (HOMO) εLUMO: ∆G = εLUMO−εHOMO.
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on the optical properties is studied. Furthermore, the impact of partial saturation and

dangling bonds is investigated to obtain insight in the excitation process and subsequent

conclusions for the luminescence properties.

The organisation of CdS nanoparticles in macroscopic crystals is addresses Chapter 9

to the organisation of CdS nanoparticles in macroscopic crystals. By a 3D organisation of

the tetrahedrally shaped CdS particles into a diamond-like superstructure the photolumi-

nescence quantum yield is improved compared to single nanoparticles in solution. In this

context the structures and electronic properties are investigated to gain further insight.

Supplementary material is provided in the appendices: In Appendix A the systematic of

the structural build-up of CdS nanoparticles in different series is reviewed. Supplementary

figures of this work are collected in Appendix B.



2 Density-functional theory

2.1 Fundamentals of quantum-mechanical calculations

The interactions of electrons and nuclei in the non-relativistic quantum mechanical theory

are described by the Schrödinger equation [32, 33, 34]:

IH Φ = i~
∂

∂t
Φ , (2.1)

where the wavefunction Φ is explicitly time dependent:

Φ = Φ(R1,R2, . . . ,RNK
;x1,x2, . . . ,xNE

; t). (2.2)

The vectors Rα denote the coordinates of the nuclei NK and xν the coordinates and spins

of the electrons NE.

In the case of a time-independent potential the wavefunction Φ can be factorised into

two terms:

Φ(x, t) = Ψ(x)A(t). (2.3)

The first term, depends only on time, the second one, depends on positions and spins. The

result of this factorisation is the stationary many-particle Schrödinger equation:

IH Ψ = E Ψ . (2.4)

The Hamilton operator IH is a differential operator that includes all internal and external

interactions of the system reads as follows:

IH =
N∑

ν=1

−1

2
∇2

ν︸ ︷︷ ︸
Te

+
1

2

N∑
µ

N∑
ν 6=µ

1

|rµ − rν |︸ ︷︷ ︸
Ve

+

NK∑
α=1

−1

2
∇2

α︸ ︷︷ ︸
TK

+
1

2

NK∑
α

NK∑
β 6=α

ZαZβ

|Rα −Rβ|︸ ︷︷ ︸
VK

−
N∑
ν

NK∑
α

Zα

|rν −Rα|︸ ︷︷ ︸
Ve−K

,

(2.5)

with the kinetic energy Te of the NE electrons, the potential energy Ve, of the electron-

electron interactions and the electron-nuclei’s interaction Ve−K with the nuclear charge Zα,

form the electronic Hamilton operator IHe. In a similar way, the Hamilton operator IHK is

constructed for the motion of the NK nuclei TK and the nuclei-nuclei interaction VK .
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2.2 Quantum chemical methods

Quantum chemical methods are mainly based on the Born-Oppenheimer approximation.

This approach consists of the separation in the fast electron and the slow nuclear motion

enables us to decouple their wave functions [35]. The result leads to is the pure electronic

Schrödinger equation:

IHeΨe = EkΨe , (2.6)

where Ψe represents the electron wavefunction in the field of the nuclei. Hence, the Born-

Oppenheimer approximation is often named adiabatic approximation. All calculations,

which are performed in this work, base on this approximation. Since, in the following the

electronic wavefunction is considered the corresponding indices are omitted.

The Schrödinger equation (2.6) covers a many-particle problem. With Hartree’s product

approach its solution is simplified by the wavefunction of the N electrons qi:

Ψ({qi}) =
N∏

j=1

ψj . (2.7)

This product of N single particle wavefunction describes the molecular orbitals (MO) ψj.

Because of the elementary property of the electron (Pauli principle), Slater determinants

have to be introduced. They concern simple anti-symmetric permutations of the Hartree

function, which covers a specific choice of the electronic orbitals – a configuration. The Slater

determinants of all configurations form complete set of functions, in which the wavefunction

Ψ can be expanded. A possible and nowadays well-defined ab initio method for the solution

of the Schrödinger equation is the approach following Hartree and Fock, the so-called HF

method. This method determines that configuration (Slater determinant), which represents

the best approximation for the total wavefunction within the anti-symmetrised product

approach.

However, through the single-determinant representation the quantitative accuracy of the

HF method is not guaranteed. Therefore, so-called post HF methods are applied, e. g., the

configuration-interaction (CI), which uses finite number of configurations for the description

of the wavefunction. Another method is the Møller and Plesset procedure (MP2, MP4) [36].

The post HF methods require high computational costs, which can exceed those of a DFT

calculation by some orders of magnitude. HF methods are inappropriate for the description

of small band gap materials, e. g., metals.

HF and derived methods∗ represent ab initio methods, in which no empirical parameters

enter. The only used parameters are the type and the number of the atoms, and the electron

number.

∗See e. g., Ref. [37]



2.3 Density-functional theory 7

2.3 Density-functional Theory[38, 39]

The DFT is based upon the work of Hohenberg, Kohn and Sham [40, 41]. The advantage

of this theory is the simplified representation of the electronic structure of the investigated

system. The exact knowledge of the many-particle wavefunction is not necessary. Thomas

and Fermi proposed [42, 43, 44, 45], that instead, the many-electron system is entirely

described by the time-averaged probability density of all electrons. This is called the electron

density %(r). It reduces the N-electron problem, with formal exactness, to 3 instead of 3N

variables only.

The important equations within the density-functional theory are the expressions of the

ground-state energy as functional of the electron density (Hohenberg-Kohn theorem), and the

equations for the calculation of the wavefunction (Kohn-Sham equations). These equations

result from the minimisation of the total energy expression of a many-particle system and are

solved self-consistently. The variety of applications of density-functional theory encompasses

all scopes of the theoretical description of molecules, clusters, solid-state and liquids.

The following sections comprise a summary of fundamentals of density-functional theory–

the Hohenberg-Kohn theorem and the Kohn-Sham equations. Approximations for the ex-

change-correlation potential and concepts of basis sets are discussed.

2.3.1 The Hohenberg-Kohn theorems

The basic principle of DFT are the Hohenberg-Kohn theorems[40]:

[1.] If the electron charge density %(r) of an N -electron system in a non-

degenerated ground state is given, then the external potential Vext(r) is uniquely

defined, when this density adjusts itself on it. The total (electronic) energy E

of this system is a unique functional of %(r).

%(r) = N

∫
Ψ0(x,x2 . . .xN) Ψ∗

0(x,x2 . . .xN) dr2 . . . drN (2.8)

E = E[%(r)]. (2.9)

The total number of electrons of the system of interest is also defined by %(r):

N =

∫
%(r) dr (2.10)

[2.] When starting from the exact electron density %(r) a variation of the of

the ground-state electron density, %̃(r) = %(r) + δ%(r), result a positive change

of the total ground-state energy:

E[%̃(r)] > E[%(r)] . (2.11)
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The variational principle holds for the energy as density functional, because the

variation of the electron density does not change the number of electrons in the

system: ∫
%̃(r) dr =

∫
%(r) dr . (2.12)

The starting point of DFT is the stationary, time-independent many-particle Schrödinger

equation (2.1). In consideration with the Born-Oppenheimer approximation, the total en-

ergy of an N -electron system results from the expectation value of the electronic Hamilton

operator IHe:

E =
〈

IHe

〉
=
〈
Te
〉

+

∫
Vext(r) %(r) dr +

〈
Ve
〉
, (2.13)

where IHe, Te, Vext(r) and Ve have been defined in Section 2.1 in Eq. (2.5). In DFT the

electron-electron interaction is written:〈
Ve
〉

=
1

2

∫∫
%(r′)%(r)

|r′ − r|
dr′ dr + Exc , (2.14)

with the exchange correlation energy Exc:

Exc =
∑

s

∫
%s(r)εxc[%(r, s)] dr (2.15)

and the so called exchange correlation energy per particle εxc [38, 46]. The external poten-

tial Vext(r) is determined by the Coulomb potentials of the nuclei of the system and may,

moreover, contain additional potentials, e. g., electrostatic or gravitational.

2.3.2 The Kohn-Sham equations

The Schrödinger equation of an N -electron system can be written as N coupled differential

equations of second order. In DFT it is transformed to N differential equations of a non-

interacting system, the so-called Kohn-Sham equations [41]. This approach of Kohn and

Sham replaces the electron-electron interaction by an external potential in such a way, that

the electronic density and, thus, the total energy of the system keep unchanged. This

external potential is the exchange-correlation potential Vxc and the Kohn-Sham equations

are single-particle equations similar to the HF method:[
−1

2
∇2 + Vext(r) +

∫
%(r′)

|r′ − r|
dr + Vxc(r)

]
φν(r) = ενφν(r) . (2.16)

the integral the Hartree potential VH . The complete expression in the brackets is referred

to as Kohn-Sham operator (single-particle operator). The three potentials are summarised

to the effective potential Veff. Now, the ground-state energy of the electronic system reads

Ee[%(r, s)] =
N∑
ν

εν −
1

2

∫∫
%(r)%(r′)

|r− r′|
dr′ dr + Exc[%]−

∫
%(r)Vxc[%(r, s)] dr . (2.17)
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The solution of the Kohn-Sham equations is only possible iteratively, e. g., by using the

self-consistent-field technique (SCF). In a first step, a Kohn-Sham potential is calculated

from a starting density. This potential is used to obtain a new density, which again is

inserted into the Kohn-Sham equations, etc.

2.3.3 The exchange-correlation potential

The exchange-correlation potential is uniquely defined as the functional derivative

Vxc[%s(r)] =
δExc

δ%s(r)
. (2.18)

contains the contributions of the electron-electron interactions, the self-interaction correction

and the part of the kinetic energy which is not described within the non-interacting system.

Thus, the calculation of Vxc requires approximations.

A possible approximation for the exchange-correlation potential is represented by the

Xα method

V (Xα)
xc (r) = −3α

3

√
3%(r)

8π
. (2.19)

Based on the HF method, Slater [47] proposes α = 1, whereas Gaspar gives α = 2
3

(based

on Thomas-Fermi) [48]. Later on, optimal values for α were calculated for all elements of

the periodic system [49].

The local density approximation

Within the local density approximation (LDA), the local exchange-correlation potential is

obtained from the exchange-correlation energy per particle εxc
hom of a homogeneous electron

gas with the same density. Therein, a functional relation on the basis of quantum-Monte-

Carlo simulations (QMC) [50] for the exchange-correlation energy is approximated to:

Exc ≈
∫
εxc

hom %(r) dr . (2.20)

The advantage of the LDA is its computational efficiency. In case of homogeneous den-

sities, the LDA exhibits high accuracy. In general, the LDA over-estimates the binding

energies and underestimated band-gap energies. This overbinding effect is caused by inho-

mogeneous densities, e. g., spin-polarisation in free atoms. In this case, the approximate

description can partially be corrected with an unrestricted approach – the local spin-density

approximation (LSDA):

Vxc = Vxc(%↑(r), %↓(r)) . (2.21)

The first LDA approach was introduced by Hedin and Lundqvist [51]. Nowadays, the

formulation of Vosko, Wilk and Nusair (VWN) [52] is used as standard solution for the

L(S)DA.
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Improvements, especially of the convergence and for the binding energies, came up with

the generalised gradient approximation (GGA) by Pedrew [53]. Therein, the exchange-corre-

lation potential has the following form:

Vxc(r) = Vxc(%(r),∇%(r),∆%(r), . . .). (2.22)

The coefficients for this expansion are obtained from reference calculations on test sets of

molecules, e. g., PW86 or BLYP [54, 55], or from physical considerations, e. g., in PW91

[56, 57] or the BPE-functional [58]. The gradient approximation (GA) corrects the ex-

change-correlation potential of the LDA by a Taylor expansion of the position variables of

the electron density – the gradient of the electron density ∇ρ(r). This expansion is not

convergent.

The advantages of the GGA are the more precise binding- and atomisation energies. The

gain of exactness demands the time-consuming computation of the density gradients.

In this work the LDA is has been used if not stated otherwise.

2.4 The LCAO method

For the solution of the Kohn-Sham equations the molecular orbitals (MO) are typically

represented by a linear combination (LC) of a finite set of appropriate functions, e. g., GTO†

or STO‡. Both, the type and the number of these functions are determining the accuracy of

the Kohn-Sham orbitals.

The LCAO method uses atomic orbitals (AO) φ as basis functions, with the aim to

minimise the number of basis functions Slater -type functions (STO’s) are most commonly

used for the representation of the AO’s:

φlm =

Np∑
p=1

Anpr
l+p−1eξnrYlm

(r

r

)
(2.23)

with Slater exponent ξn, the spherical harmonic Ylm. The radial symmetric part contains

(Np − 1) contributions of different angular moments. The expansion coefficients Anp are

obtained from calculations of single atoms.

Details on the LCAO-DFT method are given within Ref. [59]. The DFTB method, an

approximated LCAO method, is described in the following Chapter.

†gaussian type orbitals (LCGTO)
‡slater type orbitals (LCSTO)



3 The density-functional tight-binding Method

The density-functional tight-binding (DFTB) is the most prevalently used method in

this work. Originally, it was developed by Seifert and co-workers [60] for the efficient

calculation of small molecules. Numerical integration and iterative solving algorithms are

avoided [61, 62, 63]. The mathematical approach in solving the Kohn-Sham equations

corresponds to that of the non-orthogonal tight-binding methods (see review article [64]).

In contrast to the empirical TB methods all matrix elements in DFTB are obtained from

DFT-LDA calculations. The estimation procedure of the matrix elements is generically valid

and, therefore, the method becomes transferable for all elements of the periodic system.

From its origins, that date back more than 20 years by now, the DFTB method was

systematically improved. By now, this comprise a self-consistent-charge extension (SCC-

DFTB) as derived from second-order expansion of the Kohn-Sham energy with respect to

atomic charge fluctuations [65], a spin-dependent formulation [66], and a time-dependent

description of excited states [67]. Furthermore, it was largely prompted by demands that

became evident in course of implementation and application to real systems, such as cal-

culation of vibrational properties [68], infrared and Raman intensities [69], calculation of

spatial charge densities providing links to scanning tunnelling microscopy (STM) measure-

ments on crystalline surfaces [70], nuclear magnetic resonance (NMR) shifts [71, 72, 73] and

linear-scaling formulation of the secular problem [74].

The standard DFTB and SCC-DFTB schemes are excellently qualified for the determi-

nation of geometries and calculation of electronic properties, binding energies and relative

energies of numerous systems, cf. e. g., [71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87].

At the moment, there are two major computer-codes available which provide the DFTB

method: One is dftb+ [88], a successor of the old dftb-code, maintained by the Frauenheim

group at the Universität Bremen. The second is part of the deMon DFT-package [89],

maintained by Thomas Heine from the Technische Universität Dresden.

In this work, the deMon package was applied and the DFTB part have been extended by

an efficient implementation of the approximate method for the time-dependent description

of excited states (cf. Ref. [67] and Section 3.8).
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3.1 The Kohn-Sham equations in DFTB

In the DFTB formalism the Kohn-Sham single-particle wavefunction ψi are represented as

LCAO:

ψi(r) =
∑

ν

cνiφν(r−Rα) (3.1)

with the nuclei α centred at Rα. The atomic orbitals φν are determined by self-consistent

calculations of the neutral atoms. Using this approach the Kohn-Sham equations can be

transformed to the secular problem:

N∑
ν=1

cνi (Hµν − εiSµν) = 0; ∀ i, µ (3.2)

with the Hamiltonian matrix elements denoted by Hµν (Kohn-Sham matrix) and the non-

orthogonal overlap matrix elements by Sµν

Sµν =
〈
φµ

∣∣ φν

〉
(3.3)

Hµν =
〈
φµ

∣∣ T̂ + Veff(r)
∣∣ φν

〉
. (3.4)

To achieve a two-centre representation for the Hamiltonian matrix elements, the non self-

consistent effective (Kohn-Sham) potential Veff(r) is formally decomposed into atomic-like

contributions, viz. superposition of potentials of neutral pseudo-atoms [60, 61].

The solution of the Kohn-Sham equations in the form of the secular problem (3.2)

results in approximate molecular orbitals ψ(r) and, thus, the density %(r) of the investigated

system. From these equations, the total energy Etot and the forces of the system Fα acting

on a nucleus α can be obtained by introducing repulsive pair potentials, as described in

Sections 3.4 and 3.5.

3.2 The effective potential

The effective potential Veff(r) of an ensemble of nuclei and electrons with the known or

approximated exchange-correlation potential Vxc and density %(r) reads:

Veff(r) = Vext(r) + VH(r) + Vxc(r) . (3.5)

It can be represented by an angular-momentum expansion over all NK atoms α in the

system [90]:

Veff(r) =

NK∑
α=

V
(α)
eff (r) (3.6)

=

NK∑
α=1

∞∑
l=1

l∑
m=−l

V
(α)
lm (rα)Ylm

(
rα

rα

)
with rα = r−Rα. (3.7)
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In this expansion of the effective potential, all non-spherical contributions (l,m 6= 0) are

neglected, because the neutral atoms are centre-symmetric.

Analogous to the cellular method by Wigner and Seitz [91, 92], it is further assumed,

that the nucleus β in the region of nucleus α is completely screened. The expression of

the effective potential from (3.6) can be further approximated by neglecting all crystal-field

terms and, in analogy, the three centre contributions [60]:〈
µ
∣∣∣ V (β)

eff (r)
∣∣∣ ν 〉 ≈ 0 , µ, ν ∈ {α} (3.8)〈

µ
∣∣∣ V (α)

eff (r)
∣∣∣ ν 〉 ≈ 0 , µ, ν 3 {α} (3.9)

Now the Kohn-Sham matrix elements reduce to:

Hµν =


〈
µ
∣∣∣ − 1

2
∇2 + V

(α)
eff (r) + V

(β)
eff (r)

∣∣∣ ν 〉 , µ ∈ {α}, ν ∈ {β}〈
µ
∣∣∣ − 1

2
∇2 + V

(α)
eff (r)

∣∣∣ ν 〉 , µ, ν ∈ {α}.
(3.10)

Within this two-centre approximation the effective potential Veff is then composed of the

superposition of atomic effective potentials. These are determined by the self-consistent

calculation of modified atoms (pseudo atoms).

3.3 The atomic effective potential

In DFTB the atomic contributions to the effective potential V
(α)
eff and the electronic density

%0
α(r) = %0

α(r) are chosen to be central symmetric. This Section 3.3 contains only single-atom

calculations and, therefore, the atomic index α will be neglected. The atomic Kohn-Sham

operator Ĥ reads now:

Ĥ = T̂ + Veff(r) + Vadd(r)

= T̂ + Vext(r) + VH(%(r)) + Vxc[%(r)] + Vadd(r)

= −1

2
∇2 − Z

r
+

∫
%(r′)

|r− r′|
d3r′ + Vxc[%(r)] +

(
r

r0

)n

.

(3.11)

Herein the effective potential of the pseudo atom is the self-consistent potential of a

free, neutral atom modified by an additional additive harmonic contribution Vadd [93, 59]:

Vadd(r) =

(
r

r0

)n

. (3.12)

This harmonic auxiliary potential Vadd(r) compresses the density and the effective poten-

tial Veff as well as the wavefunctions of the pseudo atom compared to the free atom case.

Since the densities of free atoms are too diffuse (long-ranged potentials), the compressed

densities anticipate the density modification of free atoms due to a molecular or crystalline

environment. The harmonic auxiliary potential is characterised by its cut-off radius r0 and
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its exponent n. For the latter n = 2 or n = 4 are used. For r0 it can be shown within self-

consistent LCAO calculations, that its choice does not change the results of the calculations

when it is chosen greater than

r0 = 2rc . (3.13)

Here, rc is the double covalent radius of the atom. In this work Eq. (3.13) and n = 2 are

chosen.

Due to the contraction of the effective potential – and the wavefunction– the single-

particle energies are changed. In order to ensure the correct calculation of the dissociation

energies the single-particle energies of the free, neutral and spherical atoms ε0,free
µ are used

for the calculation of the Kohn-Sham matrix elements [61]:

Hµν =


〈
µ
∣∣∣ − 1

2
∇2 + V

(α)
eff (r) + V

(β)
eff (r)

∣∣∣ ν 〉 , µ ∈ {α}, ν ∈ {β}, α 6= β

ε0,free
µ , µ = ν

0 , otherwise.

(3.14)

The results of the atomic calculations are the atomic orbitals and effective potential. These

are used to build the Hamiltonian and overlap matrices.

3.4 The total energy in DFTB

The total energy of an electronic system within the DFT scheme is given by Eq. (2.17).

Using the density calculated with DFTB and the atomic effective potential the total energy

in DFTB is given by:

Etot[%] =
∑

i

εini −
1

2

∑
α,β

∫
V

(α)
eff (r)%β(r) d3r− 1

2

∑
α,β

∫
Zα%β(r)

rα

d3r

+
1

2

∑
α≥β

∫
Vxc[%α(r), %β(r)] d3r +

1

2

∑
α 6=β

ZαZβ

Rαβ

,

(3.15)

with

Rαβ =
∣∣ Rα − Rβ

∣∣ . (3.16)

However, calculating the ground state-energy through this Eq. (3.15) would cause un-

proportional high computational effort∗ compared to the DFTB approximations. Within a

further approximation all terms except the sum of the eigenvalues are written as a repulsive

∗The contribution of the exchange-correlation potential is calculated by numerical integration over the
whole position space with the relaxed density of the system.
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potential Urep [94]:∑
α 6=β

Urep(Rαβ) :=
∑
α 6=β

Urep(α, β,Rαβ) (3.17)

= −1

2

∑
α,β

∫
V

(α)
eff (r)%β(r) d3r− 1

2

∑
α,β

Zα

∫
%β(r)

rα

d3r

+
1

2

∑
α≥β

∫
Ṽxc[%α(r), %β(r)] d3r +

1

2

∑
α 6=β

ZαZβ

Rαβ

.

(3.18)

This leads to the simple expression for ground state energy:

Etot =
∑

i

εini +
∑
α>β

Urep(Rαβ). (3.19)

The repulsive potential Urep is short ranged. Its value is derived from reference calculations

(LDA or GGA) of dimers, small molecules or bulk systems for a range of typical bond

lengths.

With the introduction of the repulsive potential not only the computational effort is

reduced, but also methodological and numerical inaccuracies in calculation of the electronic

contributions to the total energy are avoided.

3.5 The forces

The forces acting on the atoms are calculated from the derivation of the total energy with

respect to the nuclear positions. In DFTB they are used within the representation of the

repulsive potential (3.18). By considering the secular equations (3.2) the forces on atom α

in the component u = (x, y, z) can be written as:

F (α)
u =

∑
i

ni

∑
µν

cµicνi

[
− ∂Hµν

∂(Rα)u

+ εi
∂Sµν

∂(Rα)u

]
+
∑

β

∂

∂(Rα)u

Urep(Rαβ). (3.20)

3.6 The self-consistent charge correction – SCC-DFTB

The approximations made in the DFTB method give fine results for polar and strong co-

valent systems. For heteroatomic systems with elements of quite similar electronegativities

small energy differences have to be compared with each other. Therefore partial charge

redistribution have to be taken into account. For this reason, Elstner et al. developed a

self-consistent charge correction (SCC) [65] to allow the DFTB method a more accurate

description of heteronuclear systems, especially large biomolecules.

In SCC-DFTB a second-order Coulomb correction term is introduced to the total energy

expression of Eq. (3.4):

Etot =
∑

i

εini +
1

2

∑
αβ

∆Qα∆Qβγαβ(Rαβ) + Urep(α, β,Rαβ). (3.21)
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Therein, Qα denotes charge centred at atom α (Mulliken) [95]);

∆Qα = Qα + Zα =
∑

i

ni

∑
µεα

∑
ν

cµicνiSµν + Zα, (3.22)

and γαβ(Rαβ) is a parameter related to the chemical hardness ηα [38] or the Hubbard pa-

rameter Uα: γαα ≈ 2ηα ≈ Uα. Within DFT, this parameter is calculated as the second

derivative of the total energy of the neutral atom with respect to the occupation number

nHOMO of the highest occupied molecular orbital (HOMO):

Uα =
∂2E0

α

∂n2
HOMO

=
∂εHOMO

∂nHOMO

. (3.23)

The second order Coulomb-correction commits to the Kohn-Sham matrix elements directly:

Hµν = H(0)
µν +

1

2
Sµν

∑
γ

∆Qγ

(
γαγ(Rαγ) + γβγ(Rβγ)

)
. (3.24)

However, this correction implies some disadvantages compared to the standard DFTB. In

particular the self-consistency cycle increases the computation time considerably and nu-

merous new parameters have to be introduced.

3.7 Practical realisation

In the non-self-consistent DFTB scheme, first, the pseudo atomic wavefunctions and the

effective potential are calculated in the representation of STO’s (2.23). Once these values

are calculated, the integrals (3.4) and (3.3) are computed and tabulated as functions of the

distance between the two atomic centres for an adequate dense grid of nodes. These tables

are the so-called Slater-Koster tables [96]. Due to symmetry, only 10 integrals between basis

functions remain non-zero for angular moments up to l = 2.

The set of repulsive potentials are represented numerically by a minimisation procedure

that fits them into polynomials. This guarantees a smooth development of the dissociation

curve:

Urep(r) =
∑

n

an(Rc − r)n, r < Rc, (r = Rαβ) (3.25)

The powers are typically chosen n ≤ 8. The cut-off radius Rc represents the distance beyond

the potential has subsidised, which is 1.5− 2 equilibrium bond lengths. Diatomic molecules

are typically chosen as reference structures. For solid-state calculations, e. g., CdS, the

crystal structure is used, too. Depending on the coordination numbers and different bond

distances, several references can be used for fitting, e. g., for CdS the dimer, (CdS)4 and the

crystal structure are chosen.
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3.8 Calculation of optical properties within DFTB

3.8.1 The time-dependent density-functional response theory

Within the time-dependent density-functional linear response theory (TD-DFRT) the op-

tical properties of finite systems are calculated using the coupling matrix. It gives the

linear response of the SCF potential to a change in the electronic density. In the adiabatic

approximation it has the following form:[97, 98]

Kijσ,klτ =

∫∫
ψi(r)ψj(r)

(
1

r− r′
+

∂2Exc

∂%σ(r)∂%τ (r′)

)
ψk(r

′)ψl(r
′) drdr′ . (3.26)

The excitation energies ωI are obtained via solving the eigenvalue problem∑
ijσ

[
ω2

ijδikδjlδστ + 2
√
ωijKijσ,klτ

√
ωkl

]
F I

ijσ = ω2
IF

I
klτ ; (3.27)

where ωij = εj − εi and i, k denote the occupied, j, l the unoccupied Kohn-Sham orbitals,

which have to be calculated in advance.

The essentially manageable system size is mainly restricted by the dimension of the

coupling matrix and the integral evaluation for each matrix element. For larger systems,

the matrix size can be reduced similar to the complete active space method (CAS). Further

reduction of the computational effort can be achieved by avoiding the integral evaluation in

Eq. (3.26).

3.8.2 The γ−approximation

The so called γ−approximation gives a simplified calculation scheme for the coupling matrix

(3.26) in TD-DFRT [67]. The functional derivative in the Vxc is rewritten using the set of

variables: The total density % = %↑ + %↓ and the magnetisation m = %↑ − %↓. For a spin-

unpolarised ground state (closed-shell system) and no spin-orbit coupling, the functional

derivative of the Vxc then results in

∂2Exc

∂%σ(r)∂%τ (r′)
=

∂2Exc

∂%(r)∂%(r′)
+ (2δστ − 1)

∂2Exc

∂m(r)∂m(r′)
. (3.28)

As a second step, the transition density between different orbitals is decomposed into

atomic contributions

pij(r) = ψi(r)ψj(r) =
∑

α

pijα(r), (3.29)

which are further approximated by the monopolar term of a multipol expansion:

pijα(r) ≈ qijαFα(r). (3.30)
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Fα(r) denotes a normalised spherical density fluctuation on atom α and the transition

charges qijα are assigned by the Mulliken approximation:[95]

qijα =
1

2

∑
µ∈α

∑
ν

(ciµcjνSµν + ciνcjµSνµ) . (3.31)

With Eq. (3.28) the approximated coupling matrices for singlet KS
ij,kl and triplet KT

ij,kl write

as:

KS
ij,kl =

∑
αβ

qijαqklβγ̃αβ and KT
ij,kl =

∑
αβ

qijαqklβm̃αβ, (3.32)

with the remaining two functionals:

γ̃αβ =

∫∫ ′ 1

r− r′
+

∂2Exc

∂%(r)∂%(r′)

∣∣∣∣
%

Fα(r)Fβ(r′) drdr′ (3.33)

m̃αβ =

∫∫ ′ ∂2Exc

∂m(r)∂m(r′)

∣∣∣∣
%

Fα(r)Fβ(r′) drdr′ (3.34)

that have to be estimated: γ̃αβ can be taken exactly as the Hubbard parameter γαβ introduced

in SCC-DFTB. Because the term of m̃αβ is short-ranged too, it is also considered as one-

centre contribution m̃αβ = δαβMα with:

Mα =
1

2

(
∂εHOMO

↑

∂n↑
−
∂εHOMO

↑

∂n↓

)
. (3.35)

Using Equation (3.32) for the construction of the coupling matrix and solving the secular

equation (3.27), one determines the excitation energies and the oscillator strengths f I is

determined by:

f I =
2

3

∑
k=x,y,z

∣∣∣∣∣∑
ij

∑
α

Rαqijα

√
ωij

ωI

(
F I

ij↑ + F I
ij↓
)∣∣∣∣∣

2

. (3.36)

Instead of an explicit integration of the transition-dipole matrix elements the Mulliken ap-

proximation is chosen: 〈
ψi

∣∣∣ rk

∣∣∣ ψj

〉
=
∑

α

Rαqijα, (3.37)

with Rα being the position vector of atom α.

3.8.3 Quality of the γ−approximation

The quality of the electronic excitation spectra is depends on the quality of the DFTB

parameterisation. Especially the description of the unoccupied levels is influenced by the

charge density representation, from which the atomic potentials are generated, e. g., in the

standard DFTB method or the systematically improved SCF-DFTB (cf. Chapter 4).

So far, γ−approximation has been successfully applied for the calculation of small organic

molecules.[67] The singlet states have been reproduced in remarkable agreement with the
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experiment. Similarly to the values obtained by first-principle calculations values with a

minimal basis set, the one-particle energy differences ωKS are over-estimated. The main

reason for this agreement can be attributed to the contraction of the density by the additive

harmonic potential contribution Vadd (cf. Section 3.3).

A second reason is the monopole approximation and the resulting screened interactions.

Here the coupling correction (γ−approximation) results in smaller excitation energies than

TD-DFRT, with the full interaction (3.26). Thus, through the only small deviations between

the Kohn-Sham orbitals from DFTB and coupling correction relative to ab initio results with

expanded basis sets, the agreement of the singlet excitation energies according to the exper-

iment arises. Whereas the TD-DFRT results are in general smaller than the experimental

values.

For the same reason, the triplet states are less accurate described. Since they have only

small contributions to the optical spectra and are not calculated in this work explicitly, these

deviations are not discussed in further detail.





4 Systematic improvement of the DFTB method

One objective of this work is the calculation of optical properties of CdS nanoparticles.

This requires an accurate description of occupied and unoccupied bands closest to the Fermi

level. However in DFTB and SCC-DFTB the description of unoccupied bands the results

are inaccurate, especially for heteroatomic systems (cf. Section5.1). These inaccuracies

may be addressed to the minimum basis sets and to the DFTB approximations in general.

Nonetheless, for hetero-atomic systems these inaccuracies can be addressed to an inaccurate

charge-transfer (CT) description, which constitutes the non-self-consistent treatment of the

effective potential (cf. Section 3.2).

Solving this problem, herein a new parameter-free self-consistent-field DFTB (SCF-

DFTB) is formulated. Therefore, it includes the electron redistribution the overlap region

of the atoms by recoupling the electronic density to atomic potentials. Hence, SCF-DFTB

represents a systematic improvement of the standard DFTB method towards the full DFT

scheme, which provides further arguments for the validation of the DFTB approximations.

4.1 Charge-transfer within the DFTB approximations

Within the DFTB approximations the full screening of the nuclei (neglecting the pseudo

potential contributions (3.8)) and charge neutrality (neglecting the crystal field/three-centre

contributions (3.9)) are assumed for the electronic system. In analogy, it may be related to

the cellular Wigner-Seitz methods representation (System constructed of neutral atoms)[91,

92]. Additionally, DFTB includes two-centre interactions for the bonding region (overlap

region) by neutral pseudo atoms.

In the standard DFTB scheme the effective potential (3.2), and thus, the electronic

wavefunctions are not recoupled to the electronic density. For heteroatomic systems it has

inaccuracies in the description of the inter-atomic charge redistribution. Thus, especially

the unoccupied states/bands are wrongly described.

As a first attempt to this a second-order Coulomb correction (SCC-DFTB) was intro-

duced. It handles the CT with a monopole expansion of the atom centred charges (cf.

Chapter 3 and references therein). The charge-density rebalance of the SCC-DFTB scheme

mainly effect a shifting of the orbital/band energies (onsite shift). Beside the time consuming

computation of such very long ranged lattice sums, the model of atom centred charges rep-

resented as monopoles or multipoles also leads to an inappropriate physical picture. Since
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the charge-redistribution in such a scheme is incorporated in real-space, and, not in the

orbital-space of the molecular system (overlap region).

The idea is to incorporate charge-density redistribution (in the orbital space) in the

DFTB scheme, such the effective potential (cf. Section 3.2) is treated in a self-consistent

way, similar to the full-DFT scheme. This self-consistency allows the change of the shape of

the atomic potentials, which affects mainly the bonding region in between the atoms. This

new self-consistent-field DFTB (SCF-DFTB) method will be introduced in the following

sections. The first application and test calculation follow in Chapter 5.

4.2 The Kohn-Sham-equations in SCF-DFTB

In the same way as in the standard DFTB method, the Kohn-Sham single-particle wave-

function ψi in SCF-DFTB are expressed within the LCAO approach (3.1). This allows the

transformation of the Kohn-Sham equations into the secular problem:

∑
ν

cνi

(
H̃µν − εi S̃µν

)
= 0 with

S̃µν =
〈
φµ

∣∣ φν

〉
H̃µν =

〈
φµ

∣∣ T̂ + Ṽeff(r)
∣∣ φν

〉
.

(4.1)

Herein, the Kohn-Sham matrix is build up using a self-consistent effective potential Ṽeff(r),

which is constructed by the superposition of potentials of pseudo ions. In analogy to the full

DFT scheme, but in contrast to standard DFTB, the solution of the Kohn-Sham equations

in the form of the secular problem (4.1) is carried out iteratively, within using the SCF

technique. Therefore, the molecular orbitals ψ(r) within the standard DFTB scheme can

be used as initial guess for the density %(r)′, from which the first effective potential Ṽeff(r)

is constructed.

4.3 The self-consistent effective Potential

In analogy to the standard DFTB scheme [cf. Eq. (3.6)], the self-consistent effective po-

tential Ṽeff is represented by atom-like effective potentials. In SCF-DFTB these are self-

consistent effective potentials of pseudo ions Ṽ
(α)
eff (r):

Ṽeff(r) =

NK∑
α

Ṽ
(α)
eff (r) +

qα
r

(4.2)

Ṽ
(α)
eff (r) =

∞∑
l=1

l∑
m=−l

Ṽ
(α)
lm (rα) Ylm

(
rα

rα

)n

, with rα = r−Rα . (4.3)

By the same reasons discussed in section 3.3, also the effective potentials of the pseudo

ions Ṽ
(α)
eff (r) will be compressed by an additional additive harmonic contribution Vadd.
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The Kohn-Sham matrix elements read now:

H̃µν =
〈
φµ

∣∣∣ − 1

2
∇2 + Ṽ

(α)
eff (r) +

qα
r

+

NK∑
β 6=α

Ṽ
(β)
eff (r) +

NK∑
β 6=α

qβ
r

∣∣∣ φν

〉
, (4.4)

including the conservation of the charge neutrality.

N∑
α=1

qα = 0 . (4.5)

The introduction of q
r

appears somewhat unfavourable for the description of the charge

balance in-between the nuclei, but is due to technical reasons. The exact determination of

those charges q is given in Section 4.4.

By applying the DFTB approximations (3.8 and 3.9), the expression for the Kohn-Sham

matrix elements reads similar to Eq. (3.10):

H̃µν =


〈
µ
∣∣∣ − 1

2
∇2 + Ṽ

(α)
eff (r) +

qα
r

+ Ṽ
(β)
eff (r) +

qβ
r

∣∣∣ ν 〉 , µ ∈ {α}, ν ∈ {β}〈
µ
∣∣∣ − 1

2
∇2 + V

(α)
eff (r)

∣∣∣ ν 〉 , µ, ν ∈ {α}.
(4.6)

Furthermore, the introduced compression of the effective potential changes single particle

energies. Also in SCF-DFTB the approach of Porezag et al. is applied to obtain the correct

dissociation limits [61]:

H̃µν =



〈
µ
∣∣∣ − 1

2
∇2 + Ṽ

(α)
eff (r) +

q(α)

r
+ Ṽ

(β)
eff (r) +

q(β)

r

∣∣∣ ν 〉 ,

µ ∈ {α},

ν ∈ {β},

α 6= β

ε0,free
µ , µ = ν

0 , otherwise.

(4.7)

The onsite contributions V
(α)
eff (r) are represented by potentials of free and neutral atom.

The charge-density redistributions in the electronic system are, thus, only considered in the

two-centre interactions.

This scheme represents an alternative of the cellular method by Wigner and Seitz.[91, 92]

The poly-atomic electronic systems are described to consist mainly of atoms. Variations of

electron density in-between those atoms due to chemical binding are covered to a great

extend by two-centre contributions.

4.4 Realisation of the SCF within SCF-DFTB

The above given description for the iterative solution of the Kohn-Sham equations (4.1) can

be chosen in analogy to that, which is applied in the full-DFT scheme. In this work the
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density of the system is not used directly to propagate the effective potential (4.2). Instead

a projection of it to atomic contributions is applied.

Thus, in each iteration step the new effective potential is obtained by using the atomic

charges qα in the investigated system following Eq. (4.14), as well as the atomic orbital

population Nα
µ (4.12), which specify the electronic occupation numbers of pseudo atom/ion

(4.3).

The total number of electrons N in the system result from the spatial integration of the

single-particle charge density %(r):

N =

∫
%(r) d3r , with the Ansatz: %(r) =

occ∑
i

ni

∣∣ φi

∣∣ 2 , (4.8)

which can be transformed to:

N =
occ∑
i

ni

∑
µν

ciµc
i
ν

〈
φµ

∣∣ φν

〉
, (4.9)

=
∑

α

∑
µ∈α

nµ +
∑
α 6=β

∑
µ∈α
ν∈β

DµνSµν , with nµ ≡
∑

i nic
i
µ
2
,

Dµν ≡
∑

i nic
i
µc

i
ν ,

Sµν ≡
〈
φµ

∣∣ φν

〉
.

. (4.10)

In Eq. (4.10) nµ is the orbital net population, the Dµν the density matrix elements and

Sµν the overlap integral. Using the LCAO approach and a minimum basis set (valence

only), the representation of the atomic-orbital densities can be uniquely defined by Mulliken

populations.[95] Following Mulliken, the overlap population between two centres,

n(α, β) = 2
∑
µ∈α
ν∈β

DµνSµν , (4.11)

is divided up equally on both sites. Thus, the so-called gross population Nα at atom α reads

Nα =
∑
µ∈α

Nα
µ =

∑
µ∈α

nα
µ +

∑
β 6=α

∑
µ∈β

DµνSµν . (4.12)

With the nuclear charge Zα at centre α, the gross charge qα is defined as

qα = Zα −Nα (4.13)

In case of using a valence basis set, the core electrons N core
α have to be added to the Nα

valence electrons resulting in

qα = Zα − (Nα +N core
α ) . (4.14)

In conclusion, with this approach the CT in the electronic system is controlled by the

atomic charges qα. These charges can be related to the ionicity of the atoms. In SCF-

DFTB the regarded CT will be more pronounced with an increasing differences of the

electronegativities of the atoms.
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A drawback of the self-consistent treatment of the effective potential Veff is the increase

of the computational effort. For SCF-DFTB it is in the order of magnitude of full DFT

schemes. A first application of the new method follows in the next Chapter 5. There also

an approximate realisation of the SCF will be introduced, which provides the efficiency

of the standard DFTB method. Nonetheless, SCF-DFTB can be applied as single-point

calculation using the structure that has been obtained with standard DFTB.

4.5 SCC-SCF-DFTB

SCF-DFTB incorporates charge-transfer effects in the two-centre interactions, while the

onsite energies are taken from the free neutral atoms [cf. Eq. (4.7]. Therefore, the SCC

correction scheme is applied for SCF-DFTB.

The SCC iterations are carried out on the converged SCF-DFTB effective potential 4.3

: The Coulomb correction to the Kohn-Sham matrix elements reads

H̃µν = H̃(0)
µν +

1

2
S̃µν

∑
γ

∆Qγ

(
γαγ(Rαγ) + γβγ(Rβγ)

)
. (4.15)

Here the same atomic parameters γ are used as for the SCC-DFTB. The Qα represent the

atom centred charges (Mulliken) obtained with SCF-DFTB:

∆Qα = Qα + Zα =
∑

i

ni

∑
µεα

∑
ν

cµicνiS̃µν + Zα (4.16)
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Improving the charge-transfer description in the context of the DFTB approximations

the SCF-DFTB method has been introduced in Chapter 4. This Chapter is addressed to

tests on the accuracy of this new scheme for CdS compounds, as well as, further heteroatomic

systems. At first, the insufficiency of the standard DFTB schemes in the description of the

unoccupied states will be highlighted. Subsequently, the details of the computation for

SCF-DFTB, as well as, for full SCF-DFT reference are given.

5.1 Electronic structure of CdS within standard DFTB

The electronic band structure of zinc blende CdS calculated with the standard DFTB

method is depicted in Figure 5.1 It is compared to the corresponding result obtained with

full SCF-DFT. The details of these calculations are given in the next Section 5.2. The

obtained bandstructures are very good agreement for the occupied bands. In contrast, the

unoccupied bands are shifted to higher energies. Using DFTB with the valence basis set

Cd 4d5s5p and S 3s3p, a band gap (Γ-point) of approximately 5.0 eV at the Γ−point is

obtained. This is twice as large compared to the experimental value of 2.58 eV [11].

However, the full-DFT reference calculation results a too small band gap energy, which is

approximately half of the experimental one. This deviation can be addressed to the applied

LDA.

Moreover, it has to be tested, if the deviations in the description of the unoccupied

bands with DFTB are due to an insufficient basis set. Hence, the valence basis set of atomic

functions is expanded by additional polarisation functions. The recalculated DFTB band

structure is shown in the upper right column of Figure 5.1: The additional S 3d functions

cause a shift of the unoccupied bands to lower energies. At the Γ-point these bands are

shifted from 10 eV to 5.5 eV. The conduction band, which consists of mainly Cd 5s, becomes

localised. The band gap energy remains unchanged compared to the calculation with the

smaller basis set.

Since, CdS represents a hetero-atomic system, for which in case of the DFTB method

density redistributions should be considered within the SCC-DFTB correction. The cal-

culated SCC-DFTB band structure of zinc blende CdS is depicted in the lower panels of

Figure 5.1: The bands are corrected with a small shift of the band energy toward the DFT

reference bandstructure. According to the discussion in Section 4.1, SCC-DFTB only the
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Figure 5.1: Bandstructure of zinc blende CdS calculated with standard DFTB (upper panels,

black curves) and SCC-DFTB (lower panels, black curves). The panels in the left column

denote to DFTB calculation with a Cd 4d5s5p, S 3s3p valence basis, whereas that in the right

column include additional the S 3d functions. The reference bandstructure is calculated with

SCF-DFT. For better depiction the valance band edge is shifted to 0eV. Further details of

the calculations are given in Sect. 5.2.
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band energies by an onsite shift. However, SCC-DFTB is not able to deviations for the

unoccupied bands remain basically unchanged for the smaller and the extended basis set.

5.2 Details of the calculation

5.2.1 DFT reference calculation

The reference calculations are performed with the full potential local orbital LCAO band-

structure code∗ [99]. This calculation scheme solves the Kohn-Sham equations self-

consistently. In the effective potential Veff all tree-centre, as well as the crystal field con-

tributions are included. These are neglected in the DFTB approximations. An additional

harmonic potential Vadd is used for contraction of the long-ranging contributions of the

atomic potential [93, 59]. The advantage of using the FPLO code as the reference is, that it

provides the same atomic basis representation (local orbitals), as it is applied within DFTB

in this work.

The details of the computationally details of FPLO are chosen to correspond with those

of the DFTB computation: For the exchange-correlation potential the parameterisation

following v. Barth and Hedin is chosen [100], the exponent of the Vadd is taken to n = 2,

as well as, the semi-relativistic corrections are applied herein. In contrast, the values of the

contraction radii r0 of Vadd are fixed values within the DFTB method, whereas in FPLO

they are optimised. Thus, the optimal values are calculated in each step of the SCF for

each valence function with a different angular momentum l, exclusively. The atomic levels

at lower energies are treated within a frozen core approximation, which finally corresponds

to the following configuration of the atomic basis set:

atom type core function valence function

Cd : 1s2s2p3s3p3d4s4p 4d5s5p

S : 1s2s2p 3s3p3d

For the further computational details, e. g., numeric integration meshes, the the default

values of FPLO program are used.

5.2.2 Details on SCF-DFTB calculation – parameter generation

The new SCF-DFTB scheme is tested with a calculation of the electronic structure of the

bulk polymorphs of CdS. The obtained atomic charges qα Eq. (4.14) qα Eq. (4.14) and

angular-momentum resolved orbital populations Nα
l (4.12) are summarised in Table 5.1 for

zinc blende, wurtzite and rock salt. The given reference values have been obtained from a

full SCF-DFT calculation using the FPLO code.

∗The version 5.00-18 of the FPLO-code is used (also see www.fplo.de)
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Table 5.1: Calculated atomic valence orbital populations Nα
l and atomic charges qα for the

CdS bulk modifications zinc blende, wurtzite and rock salt using SCF-DFTB. The refer-

ence values are obtained from SCF-DFT. Further details of the computation are given in

Section 5.2.

structurea atom Mulliken-population Nα
l and atomic charges qα: b

DFTc SCF-DFTB

qα s p d qα s p d

zinc blende Cd 0.62 0.74 0.74 9.90 0.60 0.71 0.92 9.77

S -0.62 1.83 4.66 0.13 -0.60 1.86 4.53 0.21

wurtzite Cd 0.67 0.73 0.70 9.90 0.52 0.71 1.11 9.66

S -0.67 1.84 4.68 0.13 -0.52 1.79 4.42 0.31

rock salt Cd 0.77 0.68 0.64 9.91 0.71 0.71 0.71 9.87

S -0.77 1.87 4.72 0.18 -0.71 1.95 4.62 0.14

a The experimental values for the unit cell parameters structures are used (cf. Ta-
ble 6.2.2).

b For Cd the l = s, p, d denote to the 5s, 5p, 4d, whereas for S to the 3s, 3p, 3d

functions.
c using the FPLO code [99]. Details are given in Section 5.2.1.

Comparing the values of SCF-DFTB and the reference calculation values a relatively

good agreement is found for the atomic charges qα. These are slightly underestimated for

zinc blende, approximately 8% for rock salt and approximately 25% for wurtzite. These

different deviations are mainly due to the used two centre approximation in DFTB and the

distinct structures. While the wurtzite structure exhibit a relatively large barelanoid-like

cavity and the zinc blende a smaller adamantine-like cavity, whereas the rock salt structure

has the smallest one. Thus, the values of the orbital populations Nα
l change within SCF-

DFTB compared to the reference: The electrons are shifted from the more localised S 3p and

Cd 4d functions toward the diffuse S 3d and Cd 5p functions. This effect is also observed for

the zinc blende structure, but less pronounced, whereas the values of the rock salt structure

corresponds much better to the DFT results.

However, the self-consistent solution of the Kohn-Sham equations increases the compu-

tational effort drastically. The gain compared to the full DFT calculation is in the order of

a factor of 2 compared to the FPLO calculation. The bandstructure calculations on bulk

CdS structures included a maximum of four atoms which is still valuable, but, becomes

impossible for structures with some thousand of atoms, e. g., nanoparticles.

Reducing the computational effort, further approximations have to be made, in particular

to avoid the integral evaluation: It have been shown, that the electronic structure of CdS

bulk and that of the nanoparticles are rather similar to each other [101, 102, 103, 104].
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Hence, in SCF-DFTB the two-centre integrals are also very similar and can be calculated

in advance for a reference system, e. g., CdS bulk. Finally, they are stored in Slater-Koster

tables and used to calculate distinct CdS structures.

However, in this approximate SCF-DFTB scheme the transferability towards structural

changes may not be given, since the parameters only represent the electronic structure of

the reference system. Nonetheless, it has been shown that for different structures, i. e., zinc

blende, wurtzite and rock salt CdS, the values of the atomic charges qα and occupation

numbers of the atomic orbitals Nα
l are rather similar (cf. Table 5.1). Furthermore, with this

approximate SCF-DFTB scheme electronic band structure calculations are carried out to

verify the transferability of the Slater-Koster tables: At first the integral tables are generated

for the three structures zinc blende, wurtzite and rock salt using SCF-DFTB. Subsequently,

with each of parameter table the band structures of zinc blende, wurtzite and rock salt CdS

are calculated. For each structure three very similar band structures are obtained. E. g., the

band structures of wurtzite calculated with the zinc blende Slater-Koster tables and that

using the wurtzite tables are resemble each other. This transferability allows using only one

integral table set for all three structural modifications of CdS.

In this work, this approximate variant of SCF-DFTB will be applied for the investigations

of the electronic structure of CdS nanoparticles. The corresponding Slater-Koster tables are

obtained from the bulk CdS zinc blende structure.

5.3 Test calculations on CdS compounds with SCF-DFTB

In this Section the electronic structures of CdS bulk and CdS molecule are calculated with

DFTB and SCF-DFTB and compared to the reference results obtained by full SCF-DFT

calculations.

In Figure 5.2 the band structures of CdS bulk CdS (zinc blende modification) are con-

trasted: The standard DFTB method, the new SCF-DFTB and as reference the SCF-DFT.

With the SCF-DFTB method the bands is in overall agreement to the full potential SCF-

DFT reference. The conduction band is reproduced at with its characteristic dispersion at

the Γ−point and exhibit a direct band gap. Minor deviations compared to the DFT refer-

ence, result at the lower symmetry points. However, these deviations are due to the DFTB

approximations, since they are present in the occupied bands for SCF-DFTB, as well as, for

standard DFTB.

Further correction is obtained by applying additionally the SCC scheme in SCF-DFTB.

Clear from the lower panels in Figure 5.2, the relative band energies the valence as well as

the conduction bands fit to the reference DFT result.

Moreover, with the same accuracy the band structure of the wurtzite CdS bulk is ob-

tained with SCF-DFTB and SCC-SCF-DFTB (cf. Figure B.1).

The values of the band gap energy are underestimated by all calculation schemes. This
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Figure 5.2: Calculated bandstructures of zinc blende CdS calculated using DFTB (left pan-

els), SCF-DFTB (right panels) and the results which include the SCC-correction (lower pan-

els). The reference bandstructure is represented by a SCF-FPLO calculation (blue curves).

Further details of the calculations are given in Section 5.2.
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Figure 5.3: Calculated electronic DOS of zinc blende CdS bulk corresponding to the band-

structures in Figure 5.2. Additionally the projected DOS (p-DOS) to the atomic functions

of Cd (left column) and S (right column) is depicted. The valence band edge is shifted

to 0 eV. Further details of the calculations are given in section 5.2.
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is due to the overbinding effect of the used LDA. Nonetheless, the band gap energy as well

as the states closest to the Fermi are obtained systematically improved with SCF-DFTB

compared to standard DFT. Hence, the inaccuracies of the standard DFTB scheme are not

due to the DFTB approximations in general. In contrast these are validated by the present

results.

Furthermore, the corresponding electronic DOS are plotted for the zinc blende structure

in Figure 5.3 and wurtzite in Figure B.2. In agreement to the previous investigations [105,

106, 107, 108, 109, 110], both electronic DOS profiles are found to be very similar to each

other: Including the projection to the atomic contributions (pDOS), The valence bands

consist of three separate bands: two occupies with contributions of mainly S 3s functions

at −12 eV and the Cd 4d at −7.5 eV. These are localised and have a high DOS, whereas

the third broads over 5 eV with the main contributions from S 3p and minor ones from

Cd 5s5p at the lower energy edge. At the valence band edge the states originate from S 3p

functions. The conduction band starts above at a band gap of approximately 2 eV with a

low electronic DOS, which is similar to the free electron behaviour. The pDOS assigns this

to consist mainly of the Cd 5s function. At higher energies the bands have again a higher

DOS, that originate from Cd 5p and S 3d functions.

The comparison of these electronic DOS and the DFT references results shows no note-

worthy differences and likewise the pDOS are in agreement. Minor discrepancies in the

electronic DOS curves between the SCF-DFTB (DFTB) calculation and the DFT results

are of technical reasons, since different broadening schemes for the electronic states have

been applied. Furthermore, the usage of the SCC correction in combination with DFTB, as

well as, SCF-DFTB effectuates an onsite shift of the band energy, which mainly affect the

Cd 4d states.

In conclusion, this reference calculation of the electronic structure of CdS bulk structures

corroborates, that a correct charge-transfer description is archived by the new SCF-DFTB

scheme. The values of the band gap energy are underestimated by all applied calculation

schemes, which is due to the used LDA. Nonetheless, the band gap energy as well as the

states closest to the Fermi are obtained systematically improved with SCF-DFTB compared

to standard DFT. Hence, the inaccuracies of the standard DFTB scheme are not due to the

DFTB approximations in general. In contrast, these are validated by the present results.



6 From bulk to finite structures in the nano regime

This chapter is addressed to the structural properties CdS nanoparticles and in particu-

lar to the influence of surface. In this size regime it has a major impact on the physical and

chemical properties of the particle. Experimental and theoretical investigations found that

the nanoparticles behaviour is mainly governed by the properties of the extended crystal

structure. The core structure of CdS nanoparticles is found to resemble the correspond-

ing bulk, while the surface atoms are found partially or completely saturated (e. g., see in

Ref.[2]) Only for small cluster the exact position of these ligands has been determined (cf.

Appendix A). For the larger ones it can only be guessed.

Therefore, in the following a surface saturation scheme is developed. It is able to describe

different structures that are bare, partially and completely saturated surfaces as well as the

distinct shapes of nanoparticles. After testing the capability of the standard DFTB method

in the accurate description of the CdS structures, This scheme is applied to generate several

series of bare and saturated structures. Finally, the structural properties and stability of

these structures are studied.

6.1 Modelling structures of CdS nanoparticles

6.1.1 The bulk CdS and surface structures

Two modifications of CdS are known that are stable under ambient conditions – namely

Hawleyite (zinc blende structure, colourised diamond) and Greenockite (hexagonal wurtzite,

colourised lonsdaleite) [111]. A third is crystallising in the rock salt structure, which is

observed under high pressure (above 2.5− 3.5 GPa) [112]. Both polymorphs – zinc blende

and wurtzite – are found energetically degenerated, while experimental evidences indicate

the latter one being slightly more stable [11]. Both comprise a tetrapodal building block in

which each atom of one sort is surrounded by four of the other one. In terms of Bravais

lattices, the zinc blende crystal structure is a face-centred cubic (fcc) lattice with a diatomic

basis. This basis can be taken as one corner atom plus the centre of the cubic building

block. The wurtzite structure has hexagonal symmetry with typically a four-atomic basis.

Following common rules of chemistry for covalently bound compounds, e. g., valence

rules, structural build-up and electronic structure of CdS can be understood to a large

extent. There are some variants and generalisations of these rules in use, i. e., the Grimm-
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Sommerfeld rule or the so-called Mooser-Pearson relation. The Grimm-Sommerfeld rule

describes the structural similarity:

A binary compound of elements of group N − k and group N + k owe the same

properties of the group N of the periodic system of elements (PSE).∗

The Mooser-Pearson relation in contrast is based on an ionic approach and suited for semi-

conductor compounds:

Ne +B(a) −B(c)

Na

= 8

with

Ne number of valence electrons per formula unit,

B(a) number of electrons in anion-anion bonds,

B(c) number of electrons in cation-cation bonds or,

free electrons at the cation,

Na number of anions.

Binary Grimm-Sommerfeld compounds, such as II-VI semiconductor systems with tetra-

hedral networks (i. e., zinc blende or wurtzite type), are representing a special case herein:

Ne = 2 + 6 = 8

B(a) = B(c) = 0

Na = 1

8 + 0− 0

1
= 8.

In this simple model, the metal atoms (electron donator) provide two electrons to the

chalcogenide atoms (electron acceptor), which result ”stable” closed-shell configurations,

e. g., Cd2+ ([Kr]d10-configuration) and S2 – ([Ar]-configuration). In the tetrahedral coordi-

nation sphere this results in a ”charge-transfer” of 0.5 electrons per bond from Cd to S.

Considering the electronic structure in bulk of CdS, this is mirrored in a large band gap

(2.58 eV) [11], which arises due to the complete filling of the S 3p like states (shell closing).

The two 5s electrons per Cd atom first fill up this S 3p-like state (two unoccupied orbitals

per atom) to form the bonds with mainly covalent character in a tetrahedral coordination. A

further discussion of the structure-electronic structure interplay in CdS nanoparticles follows

in Chapter 7.

∗Eg., zinc blende (ZnS) as generalisation of the element structure of carbon (diamond structure) or GeSe
as variant of the grey phosphorus.



6.1 Modelling structures of CdS nanoparticles 37

Table 6.1: Some geometric properties of spherical, cuboctahedral and tetrahedral nanoparticles.

property a tetrahedronb cuboctahedronb sphere

A
√

3a2
(
6 + 2

√
3
)
a2 4πr2

V
1

12

√
2a3 5

3

√
2a3 4

3
πr3

rS
1

4

√
6a a r

V

VS

2

3π

√
2 ≈ 0.3

5

4π

√
2 ≈ 0.56 1

V

A

1

9
rS ≈ 0.11rS

5
3

√
2

6 + 2
√

3
rS ≈ 0.25rS

1

3
r

a A denotes the surface, V the volume, r the radius and the index S the circumscribed sphere of the
polyhedron with the radius rS .

b The variable a is the edge length of the corresponding polyhedron.

6.1.2 Modelling bare CdS nanoparticles

Experimentally determined structures of CdS nanoparticles were found to resemble the

bulk CdS structure, even for the smallest CdS nanoparticles [113, 114, 115, 116, 117, 118,

119, 120]. All of these structures have protecting ligands on their surface. Their ”core”

(inner) structure is following that of the CdS bulk, which is experimentally evidenced for the

structures of larger nanoparticles. In appendix A a systematic overview of the characterised

series of CdS cluster structures is given.

Following this experimental results, the structures were modelled such, that they rep-

resent a part from the infinite periodic crystal, i. e., with either a zinc blende or wurtzite

structure. These studies investigate CdS and CdSe clusters and nanoparticles using empir-

ical tight-binding models [121, 122, 101, 123, 124, 125], whereas a parameter-free density-

functional method was used for small CdSe clusters by Eichkorn and Ahlrichs [126], Tro-

parevsky and Chelikowsky [127], and Galli et al. [128]. Within standard DFTB, these were

carried out for a variety of II-VI semiconductor systems [129, 102, 130, 131, 78]. Recently,

Kasuya et al. suggested, that other structures than that of the bulk polymorphs may also

be relevant, for example cage-like structures that have been found for boron nitride [132].
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Shape

For these small particles, the number of surface atoms is significant compared to those in the

core of the particle, so that their contribution to the energetic and the electronic properties

is crucial. So that, a minimisation of the surface energy dominates the structural build up.

However, in case of the smallest nanoparticles, which are mostly found with a tetrahedral

shape (cf. Appendix A). This is due to local the geometry of the surface, viz. the tetrahedral

coordination, allowing an ideal faceting (for zinc blende only (111)-faces). Hence, the larger

surface to volume ratio compared to the sphere is compensated. The spherical geometry will

become favourable for very large structures, when the portion of the surface energies becomes

negligible. However, for structures in-between, the cuboctahedral shape is a compromise.

It possesses both – an ordered surface and a relatively low surface to volume ratio (cf.

Table 6.1).

Considering the spherical shape for CdS nanoparticles’ structures, (cf. i. e., Refs.

[133, 16]) and starting from the bulk zinc blende or wurtzite structures, essentially, two

types of structures can be derived:

• stoichiometric [(CdS)n], when the centre of the spherical cluster

is the midpoint of a Cd–S nearest-neighbour bond [102], in the cen-

tre of adamantine (zinc blende structure) or barelanoid (wurtzite

structure) like cavities, and

• non-stoichiometric [CdmSn], with n 6= m, when the centre is on

an atom position [102].

Size series of cuboctahedral shaped structures can be obtained for the zinc blende

as well as for the wurtzite structure. They are obtained, when starting from the smallest

building block – the tetrahedral CdS4 or respectively SCd4 cluster. Then continuing with the

crystal structure shells of Cd–S (S–Cd) atoms are added (cf. Appendix A). The resulting

particles are non-stoichiometric with the surface atoms being exclusively of one type

depending on the number of added atom shells.

Based on the zinc blende only, tetrahedral shaped nanoparticles are observed ex-

perimentally, while none seem to exhibit the wurtzite structure exclusively. This type of

shape is derived similar as the cuboctahedral one and also starting from the tetrahedral

building block. The structure is continued only in one, i. e., (111), crystallographic di-

rection of the corresponding zinc blende bulk structure. Also this structure series are of

non-stoichiometric composition.

With a further modification on the vertices of these tetrahedral structures, one obtains

slightly different, but tetrahedral nanoparticles with a mixed zinc blende-wurtzite structure

(cf. Appendix A and Figure 6.1).
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Electronic structure of the surface

For a single unsaturated particle, due to the finite surface structure, the electronic structure

balance of the bulk is locally disturbed and, thus, the stable electron octet configuration

can not be reached for either type of the atom (cf. Section 6.1.1). It is not satisfied for

nanoparticles with a stoichiometric composition [(CdS)n].

The possible surface defects, which arise through the modelling via ”cutting” the infinite

bulk structure, are summarised in Table 6.2). The therein used nomenclature is the follow-

ing: (···S)3
−−−Cd denotes a surface Cd atom, which miss one S with respect to the bulk (one

dangling bond). The nearest neighbour (NN) atoms in the core of the nanoparticles are

written in the brackets. They are fourfold coordinated and their environment corresponds

to the bulk. Such, (···S)2−−Cd misses two S and (···S)1−Cd three S respectively. Addition-

ally, a number for the deficit of electrons to the stable octet configuration is defined: For

surface-located S atom NeS
have negative numbers (missing electrons) and positive NeCd

for

Cd atoms, which excess electrons (charge).

An example which demonstrates the disturbed charge balance of the particles is given in

the upper part of Table 6.4. Therein, the electronic structures of the surface of nanoparticles

with stoichiometric composition [(CdS)n] and spherical shape are analysed. These structures

not only owe an equal number of atoms of both type in total, but also equal numbers of

surface atoms, as well as, their type of coordination and dangling bonds respectively. Such

an alternation of local positive and negative surface charges is not observed in experimental

observations, rather than a saturation of these reactive centres.

However, for gas-phase structures, which are found to be non-saturated, reconstruction of

the surface atoms can be an alternative for stabilising the surface structure [132]. Nonethe-

less, the nanoparticles are generally synthesised in the solution in which defects (dangling

bonds) as reactive centres are easily find a counterpart reactant for stabilisation.

6.1.3 Modelling surface-saturated CdS nanoparticles†

Due to the size scale of the nanoparticles, the properties of the surface determine mainly

that of the whole particle. The particles are synthesised mostly in solutions of Lewis-base

type organic solvents, leading to cadmium chalcogenide nanoparticles saturated with tri-

octyl phosphine/tri-octyl phosphine oxide (TOP/TOPO) [16, 103], polyphosphate [134], or

thiol groups [116, 117, 135, 136, 118, 119, 120]. During the growth process these in most

cases surfactants are essential for the electronic stabilisation of the nanoparticles surfaces.

Nonetheless, this bonding must be reversible to some extent to allow further growth [137, 16].

A stable surface is needed to stop the growth process (ligand exchange) and, further, avoid

phenomena such as dissolution and photodegradation [138]. While an incomplete coverage

†In more general this is valid for all type II-VI semiconductors of AB-stoichiometry.
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Table 6.2: Possible surface defects and their electron balance for II–VI semiconductors with zinc

blende or wurtzite structure (herein represented by CdS). The given saturation scheme takes into

consideration, that all metal atoms (Cd) are in a bulk-like environment, viz. tetrahedral coordinated

by the chalcogenide atoms (S).

coordination of the surface atoma

threefold twofold single

defect (···S)3
−−−Cd (···S)2−−Cd (···S)1−Cd

No. dangling bonds at Cd 1 2 3

VE (−0.5e− per bond) 3 · −0.5 + 2 = 0.5 2 · −0.5 + 2 = 1.0 1 · −0.5 + 2 = 1.5

octet deficitb NeCd
0.5 1 1.5

defect (···Cd)3
−−−S (···Cd)2−−S (···Cd)1−S

No. dangling bonds at S 1 2 3

VE (+0.5e− per bond) 3 · 0.5 + 6 = 7.5 2 · 0.5 + 6 = 7.0 1 · 0.5 + 6 = 6.5

octet deficit NeS
-0.5 -1 -1.5

saturation (···Cd)3
−−−S−R (···Cd)2−−S−R (···Cd)1−S−R

VE (+1e−per R) 3 ·0.5+6+1 = 8.5 2 ·0.5+6+1 = 8.0 1 ·0.5+6+1 = 7.5

octet deficitb NeS
0.5 0 -0.5

a With respect to the non-saturated surface atom.
b A positive value denotes to an electron excess to the corresponding stable octet configuration.

(missing surfactants) causes surface-trapped states in the luminescence spectra [125, 103,

139, 140].

When comparing the experimental determined structures of the small nanoparticles (cf.

appendix A), all Cd atoms are found fourfold coordinated by S atoms, which is verified

for the larger particles by extended x-ray-absorption fine structure (EXAFS) and Fourier -

transform infrared (FTIR) spectroscopy [140]. Furthermore, in this study most of the surface

chalcogenide atoms were characterised having non-saturated (dangling) bonds.

Surfactant molecules have been treated in previous studies by theoretical models, e. g.,

within DFT [126], tight-binding [125, 124], semi-empirical [141] or classical force field ap-

proaches [142]. However, for those nanoparticle structures the surfactants’ positions were

known from experiment (small nanoparticles) or added by geometrical considerations. A

systematic investigation, and especially a theoretical foundation of the nanoparticle surface

saturation over a larger size range, which includes the electronic structure balance, is lacking.

Therefore in the following, a structure saturation scheme is introduced, which combines

experimental results and chemical valence-bond theory (cf. Section 6.1.1).
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Complete saturation scheme

In this scheme, according to the experimentally characterised structures, all Cd atoms are

considered to be full fourfold coordinated as in the bulk. In terms of valence-bond theory, this

can be understood, since the electron donator Cd owes dangling bond(s). These are reactive

centres, which attract electron acceptors. Accordingly, the surface S atom’s coordination,

the number of its valence electrons, and thus its deficit to the stable octet, was already

discussed above. For a surface S atom the tetrahedral coordination results three different

environments (cf. Table 6.2).

By saturating the dangling bonds, by substituting the surface covering S atoms by a

sulphur-containing surfactants, e. g., S−R with R = organic residue (thiol or thiophenol),

the chemical nature of sulphur being just twofold coordinated is exploited. However, not in

all cases the local electron deficit of the surface S atom NeS
can be compensated completely

(cf. lower part in Table 6.2): Only for (···Cd)2−−S−R the surface S atom reaches the stable

octet (NeS
= 0). In contrast, with NeS

= −0.5, electrons are missing for (···Cd)1−S−R,

while (···Cd)3
−−−S−R has an electron excess of NeS

= 0.5 with respect to the octet rule.

Additionally, also the non-saturated (···Cd)3
−−−S should be taken into consideration for

the surface termination, since it has a comparable deficit NeS
= −0.5, too. It is further-

more present in the experimentally determined crystal structure of the [Cd32S14(SR)36]
0

compound. It owes four of such non-saturated surface atoms [120, 118]. Concerning larger

nanoparticle structures these may correspond to those identified by Carter et al. [140].

In short, the used saturation scheme for II–VI semiconductor nanoparticles with zinc

blende or wurtzite structure reads the following:‡

1. Full tetrahedral coordination of all Cd-atoms, with respect to the bulk structure (zinc

blende and wurtzite).

2. Saturation at the four distinct surface positions:

(···Cd)3
−−−S, (···Cd)3

−−−S−R, (···Cd)2−−S−R, (···Cd)1−S−R.

After applying this saturation scheme the nanoparticles are of composition:

[CdmSn(SH)i]
q, with q=2(m−n)−i

with q representing the charge of the nanoparticles, which is obtained by summing up the

deficit (excess) valence electrons at the surface S-atoms. This additional charge q is needed

to stabilise the nanoparticles electronically, it guarantees the complete filling of the valence

states (S 3p). Otherwise, if the structures has more or less electrons, the electronic properties

‡In analogy, for the rock salt structure the scheme has to be extended, that it satisfy the charge balance
for an octahedral coordination.
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are changed, since an almost zero HOMO-LUMO gap would result. However, this charge

can easily be compensated in solution by the counter ions.

Furthermore, for clusters (nanoparticles), stability is often discussed in relation to the

existence of a significant large band gap between valance and conduction band. In terms of

molecular orbital theory, the gap between the highest occupied and lowest unoccupied molec-

ular orbitals (the HOMO-LUMO gap) [143]. Moreover, the existence of magic numbers, i. e.,

of particularly stable clusters, is associated to the occurrence of those gaps [144, 145]. When

discussing the stability of II–VI semiconductor nanoparticles, one finds interplay between

structural and electronic effects.

Examples and implementation of the structure generation and saturation algorithm

With Table 6.3 as a first example the saturation scheme is tested on small, experimen-

tal characterised CdS nanoparticles.§ For all compounds, the above introduced saturation

scheme describes their surface structure correctly.

For these small compounds the generation of the structures is feasible by ”hand” or

using common molecular structure editors (molden, molekel, etc.). Thus, for efficiency the

introduced structure generation and saturation algorithms are implemented in a computer

code: On the basis of a certain bulk structure, spherical, cuboctahedral or tetrahedral

nanoparticles are generated. This is realised by cutting them out from an extended structure

of thee corresponding unit cell, which serves as input for the program. New structures are

found by increasing the cutting-radius. Optionally, these bare nanoparticles can be saturated

following the saturation scheme.

A second example for the saturation scheme, which is given in the lower part of Table 6.4,

is generated using this tool. In this example stoichiometric, spherical nanoparticles with the

composition [(CdS)n] have been saturated. After this saturation the values of q are relatively

small (q = 6, . . . , 18). This is due to the complete saturation of the surface. In contrast,

much higher charges q would result form the a saturation which includes the non-passivated

(···Cd)3
−−−S instead of (···Cd)3

−−−S−R.

In the following investigations of the structural, electronic and optical, size dependent

properties of type II-VI semiconductor nanoparticles the structures are modelled respectively

to the above given schemes. Whereas the saturated are based on bare structures. As

follows, the threefold coordinated, but in one bond unsaturated (···Cd)3
−−−S is not included.

Furthermore, the surfactant residue R is approximated by H atoms.

§These structures are further used as reference for the investigations in the following.
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Table 6.3: Validation of the saturation scheme for II-VI semiconductor nanoparticles struc-

tures: Experimentally characterised, small CdS clusters and nanoparticles compounds following

[CdmSn(SH)i]
q with q=2(m−n)−i representing the charge of the nanoparticles. Their correspond-

ing structures are depicted in Figure 6.1.

[CdmSn(SH)i]
q Lit. N≡S N−S−R N=S−R N≡S−R

∑
NeS

NeS −0.5 −0.5 0.0 0.5

[Cd(SR)4]
2 – [146] 0 4 0 0 -2

[Cd4(SR)10]
2 – [147, 146] 0 4 6 0 -2

[Cd4S(SR)10]
4 – [24] 1 7 3 0 -4

[Cd4S(SR)12]
6 – [122] 0 12 0 0 -6

[Cd8S(SR)16]
2 – [148] 0 4 12 0 -2

[Cd10S4(SR)16]
4 – [113, 114, 146] 4 4 12 0 -4

[Cd13S4(SR)24]
6 – [122] 0 12 12 0 -6

[Cd17S4(SR)28]
2 – [119] 0 4 24 0 -2

[Cd20S13(SR)22]
8 – [149] 12 4 18 0 -8

[Cd28S13(SR)42]
12 – [122] 0 24 18 -0 -12

[Cd32S14(SR)36]
0 [120, 118] a 0 4 36 0 -2

[Cd32S14(SR)40]
4 – b 4 4 36 0 -4

[Cd35S28(SR)28]
14 – [149] 24 4 24 0 -14

[Cd54S32(SR)48]
4 – a 12 0 48 0 -6

[Cd54S32(SR)52]
8 – b 12 4 48 0 -8

[Cd55S28(SR)64]
10 – [122] 0 24 36 4 -10

[Cd92S55(SR)92]
18 – [122] 0 40 48 4 -18

a These structures are missing the ligands at the four edges ((···S)3−−−Cd), additionally 2e−

(0.5 each) have to be considered in the total charge balance.
b These structures are modelled by adding the four additional ligands each to the edges of the

experimental structures [Cd32S14(SR)36]
0 and [Cd54S32(SR)48]

4 – .
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Table 6.4: [Surface structure of bare (upper part) and saturated (lower part) II-VI semiconductor

nanoparticles structures (CdS). Their shape is spherical and the crystal structure is zinc blende.

The centre of the particle in on a Cd–S nearest neighbour bond which result a stoichiometric

composition (CdS)m. After saturation, these structures have the composition [CdmSn(SH)i]
q, with

q=2(m−n)−i representing the charge of the nanoparticles.

(CdS)m N−S N=S N≡S NSbulk

NeS =−1.5 −1.0 −0.5 0.0
∑
NeS

N−Cd N=Cd N≡Cd NCdbulk

NeCd
=1.5 1.0 0.5 0.0 −

∑
NeCd

(CdS)16 3 3 6 4 -10.5

(CdS)28 6 3 9 10 -16.5

(CdS)37 3 12 6 16 -19.5

(CdS)43 0 12 15 16 -19.5

(CdS)68 3 15 16 34 -27.5

(CdS)95 9 12 22 52 -36.5

(CdS)104 6 21 19 58 -39.5

(CdS)119 0 27 25 67 -39.5

(CdS)132 4 18 39 71 -43.5

(CdS)144 1 24 36 83 -43.5

(CdS)180 0 30 39 111 -49.5

(CdS)306 3 39 60 204 -73.5

[CdmSn(SH)i]
q N≡S N−S−R N=S−R N≡S−R

NeS =−0.5 −0.5 0.0 0.5
∑
NeS

[Cd16 S4 (SH)30 ] – 6 0 18 6 6 -6

[Cd26 S8 (SH)46 ] – 10 0 31 4 11 -10

[Cd37 S16 (SH)54 ] – 12 0 30 18 6 -2

[Cd43 S16 (SH)60 ] – 6 0 27 18 15 -6

[Cd68 S34 (SH)77 ] – 9 0 34 27 16 -9

[Cd95 S52 (SH)104]
– 18 0 61 18 25 -18

[Cd104S58 (SH)107]
– 15 0 49 39 19 -15

[Cd119S67 (SH)119]
– 15 0 55 39 25 -15

[Cd132S71 (SH)130]
– 14 0 55 36 39 -14

[Cd144S83 (SH)136]
– 14 0 64 36 36 -14

[Cd180S111(SH)153]
– 15 0 69 45 39 -15

[Cd306S204(SH)222]
– 18 0 96 66 60 -18
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6.2 Reference calculations on CdS bulk and molecular structures

For the test of the DFTB method both size extremes of CdS structures small molecules

(clusters) and the bulk polymorph of CdS are chosen. Especially the structures of the small

clusters have been intensively studied experimentally (cf. previous sections and references

therein). Not only for the larger nanoparticles, but even for the very small ones the structure

is found almost identical to that of the bulk CdS.

At first, the CdS bulk and, secondly, the small clusters’ structural properties are inves-

tigated with standard DFTB method (cf. Section 3). Therein, geometry optimisations are

performed on the structures and compared to the results of other methods reported in the

literature. Beside DFTB, these include empirical potentials (force fields), semi-empirical

methods, HF and DFT formalisms.

6.2.1 Generation of the (standard) DFTB parameters

For the investigation of CdS nanoparticles with the DFTB method, the Slater-Koster tables

have to be generated (cf. Section 3.7). According to the recent investigations of Joswig et al.

[102, 150], a similar parameterisation for the Cd and S integral calculations are chosen, which

consider also semi-relativistic corrections. The repulsive potential (3.18), in addition to the

small (diatomic) molecules used by Joswig et al., is including the fit for the bulk CdS zinc

blende structure. Further, Slater-Koster tables for the ligand-nanoparticle interactions are

calculated in analogy.

Therein the Slater-Koster tables where generated including the following atomic func-

tions in the minimum basis sets:

element r0[a.u.] valence functions

Cd : 5.6 4d5s5p

S : 3.9 3s3p

O : 2.7 2s2p

C : 2.7 2s2p

H : 1.3 1s

with r0 being the compression radius for atomic functions (cf. section 3.3).

6.2.2 Bulk CdS structures

The calculations of CdS bulk – zinc blende, wurtzite and rock salt– are summarised in

Table 6.2.2. For zinc blende and rock salt, the primitive unit cell representation, which

includes two atoms per cell, is chosen, preliminary to provide consistency for the comparison

of standard DFTB and the DFT reference¶. In all cases the number of K points for sampling

¶The full-potential local-orbital (FPLO) LCAO-DFT formalism is used (cf. Section 5.2.1).
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Table 6.5: Reference values of the CdS bulk polymorph structures by standard DFTB calculation:

Lattice constants, bond lengths r, and relative total energies in comparison to other theoretical and

experimental values.

structure parameter DFTB DFTa exp.b theoryc

wurtzite a [pm] 409.7 412.3 412.5 412.1

c [pm] 670.4 674.6 674.9 668.2

rwz(Cd−S) [pm] 251.0 252.5 252.7 252.2

zinc blende a [pm] 579.0 583.0 581.8 581.1

rwz(Cd−S) [pm] 250.7 252.4 251.9 251.6

rock salt a [pm] 552.0 548.0 530.2

rrs(Cd−S) [pm] 276.0 274.0 265.1

∆Ewz−zb/Natom
d [eV] 0.0033 -0.0011

∆Ers−zb/Natom
d [eV] 0.885

a Using the FPLO code [99]. Details are given in Section 5.2.1.
b Ref. [11] for zinc blende and wurtzite, Ref. [112] for rock salt.
c Refs. [151, 107].
d ∆Ex−zb has a positive value, if zinc blende is more stable than wurtzite or rock salt (x = {wz, rs}).

the Brillouin zone are chosen such that the total energy is converged to a threshold of

10−6a.u..

Subsequently, the equilibrium lattice constants are obtained by varying the lattice pa-

rameters. The results are in good agreement with the other theoretical values and compared

to the experimental ones. In particular the bond lengths differ by less than 1 %. Only for

the rock salt structure, the bond lengths rrs in DFTB (and DFT) are about 3 % larger than

the experimental value [112]. It has to be noted, that despite using only the zinc blende

structure fitting the repulsive potential in DFTB the bond length compared result in an

astonishingly good.

Furthermore, the calculation reproduces the near-degeneracy of the two crystal struc-

tures – zinc blende and wurtzite– within 3.3meV the zinc blende phase being more stable.

Experimental investigations [11] show indications for the opposite: A slightly more stable

wurtzite polymorph. But, up to now no relative total energies are available. Moreover, the

high pressure rock salt structure results in a local energy minimum, which is almost 1eV

above the zinc blende structure.

In comparison to Joswig et al. [102], the additional consideration of the bulk structure

in the repulsive potential for the Cd–S interaction does not improve the results for the bulk

CdS structures remarkably, but it allows the accurate description of the rock salt structure,

too.
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6.2.3 Small CdS cluster and nanoparticle structures

A second test of the DFTB parameters comprises the calculation of the structural prop-

erties of small nanoparticles, from which the structures have been determined in experi-

ments. The complete set of these structures is summarised in Table 6.3, which contains

also the literature references. We have added two structures to this set: The tetrahedral

shaped [Cd32S14(SR)40]
4 – and [Cd54S32(SR)52]

8 – . They are derived from [Cd32S14(SR)36]
0

and [Cd54S32(SR)48]
4 – , which miss one ligand molecule at each of the four vertices of the

structure. A systematic classification of structures of small CdS nanoparticles is given in

Appendix A.

The experimental geometries are used as a starting point for the geometry relaxation.

This is performed using the standard DFTB method. The structures are optimised below a

maximal gradient of 10−4 Ha/Bohr within single MD simulations.‖

In the calculated initial structures the original (experimental used) surfactants are ap-

proximated with hydrogen atoms. Their final optimised geometries are qualitatively re-

produced with these DFTB parameters (cf. Figure 6.1). Quantitatively, the Cd–S bond

distances and angles in the centre of the nanoparticle are in agreement with the experiment.

Thus they are significantly less, but also close to the experimental values for the corre-

sponding bulk structures (cf. Table 6.2.2). While those of the atoms at the cluster surface

are slightly smaller (1-2%) compared to the experimental values. This is not due to the

approximated surfactants (R=H). Since the explicit consideration of larger and experimen-

tally used ligand molecules [Cd17S4(SR)28]
2 – and [Cd32S14(SR)40]

4 – ) with (R−−CH2CH2OH,

R−−Ph(C6H5) in the DFTB simulation did not cause significant changes in the Cd–S bond

lengths at the particles surface and, thus, validates the H-approximation.

6.3 Structural properties of CdS nanoparticles

Up to here, the structure generation and saturation scheme for the CdS nanoparticles’ was

introduced, implemented and successfully tested using the DFTB method. On this basis,

in the following the structural properties of CdS nanoparticles up to approximately 1000

atoms are investigated. First, bare (non-saturated) structures are studied, subsequently that

of completely saturated ones. Finally, the effects of an incomplete saturation, i. e., defects

or dangling bonds, on the structural properties are investigated by a successive saturation

of the surface.

6.3.1 Bare nanoparticles

In recent investigations spherical, bare (non-saturated) II–VI semiconductor nanoparticles

and their structural properties were investigated with the standard DFTB method [129,

‖The computational details of this MD simulations are described in detail in the following section.
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Figure 6.1: Optimised structures (DFTB) of experimentally characterised

surface-saturated nanoparticles. The Cd atoms are represented by grey, S

by yellow and H atoms by white spheres. More information on the struc-

tures is given in Table 6.3. The corresponding optical excitation spectra

are resented in Table 8.1 and Figure 8.2.
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Figure 6.2: CdS nanoparticles as spherical part of the zinc blende bulk structure [CdS]192
(middle). The Cd atoms are represented by red, S atoms surface is reconstructed includ-

ing the shortening of Cd–Cd distances (left), while explicit surfactants maintain the initial

structure of the bulk in the nanoparticles [Cd192S118(SH0 164]
16 – .

102, 152, 153, 130, 131]. According to Ref. [102], here CdS structures are calculated, where

additional to spherical shape also the cuboctahedral and the tetrahedral ones are considered.

The investigations comprises the structure generation starting from the equilibrium

structure of the corresponding bulk CdS polymorph, which is in detail explained elsewhere

(cf. Section 6.1). Subsequently, the geometries of the nanoparticles with an effective ra-

dius r ≤ 1.7 nm are relaxed with MD simulations that the maximal gradient results below

10−4 Ha/Bohr. These MD simulations are carried out applying a NVT ensemble with the

following parameters: MD temperature T = 0 K, which is controlled by a Berendsen ther-

mostat [154] applied to each atom independently, and a MD time step ∆t = 2 fs.

The result are in full agreement with Joswig et al. [102]. In Figure 6.2 the relaxed struc-

ture of a bare, spherical CdS nanoparticles is shown exemplarily. Independent of the initial

structure, for nanoparticles with a large number of singly bonded surface atoms, nearest-

neighbour (NN) bonds are formed in the structural relaxation neither between Cd atoms

nor between S atoms. However the Cd–Cd bond distances result within 3.6−3.8 pm, which

is shorter than 4.1 pm in CdS bulk, but still much larger than ≈ 3 pm in Cd bulk. By

analysing the radial distribution of the atoms (cf. Figure 1 in [102]) an outward displace-

ment of the sulfur atoms and inward displacement of the cadmium atoms can be seem for the

investigations herein. The inner parts of the nanoparticles largely kept the initial structure

of the bulk material. A surface region occurs, whose size is independent of the particle size

and consists of the outermost two layers of atoms (corresponding to a thickness of about

2− 3 pm).

Similar results are reported by other theoretical studies of CdS and CdSe nanoparticles
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[124, 102, 108, 107, 109]. Galli et al. [128] describes a self healing of the surface similar to

previous reports [127, 155].

Additionally, here also cuboctahedral, as well as, tetrahedral structures are investigated.

Their geometries are generated following the scheme, which is given in the beginning of this

chapter. The compounds are non-stoichiometric and have the sum formula (CdmSn)
q. For

both types of structure the same results comparing to the spherical structures are obtained.

Furthermore, nanoparticles with the wurtzite crystal structure of CdS are considered.

The results correspond to those of the zinc blende and agree with Ref. [102].

6.3.2 Saturated nanoparticles

According to the saturation scheme (cf. Section 6.1.3 the initial structure of bare CdS

nanoparticles are saturated, with results compounds with the sum formula [CdmSn(SH)i]
q.

These structures with an effective radius r ≤ 1.8 nm are investigated with the standard

DFTB method with respect to their structural properties. Here, the same relaxation scheme

(MD simulation) is applied used for the bare structures above. Also this investigations

address to the shape, i. e., spherical,∗∗ cuboctahedral and tetrahedral, of the particles, as

well as, the zinc blende and wurtzite crystal structure.

The relaxed geometries of the saturated CdS nanoparticles result only in marginal struc-

tural distortion relative to the initial bulk structure. An example therefore is given in

Figure 6.2. The ligand circumvent any diffusion of atoms or formation of homonuclear NN

bonds at the nanoparticles’ surface. There is no dependence on the result, whether the

underlying structure was derived from the zinc blende or wurtzite crystal structure or has

a spherical, cuboctahedral and tetrahedral shape.

These findings are in agreement with experimental results for structurally characterised

particles (cf. Section 6.2.3 and references therein). Explicit surfactants have already been

considered in the studies by Eichkorn and Ahlrichs, who investigated only small CdSe clus-

ters with DFT [126], as well as by Gurin for CdmSn compounds with m ≤ 20 using ab ini-

tio methods [104]. In contrast, Galli et al. did not find any differences in the structures of

surfactant-capped and naked CdSe clusters investigating them with DFT [156].

6.3.3 Partial saturation

Corresponding to experimental results, Talapin et al. [26] and Qu et al. [25] observed the

nanoparticles as defect free (completely saturated) when they reach the point of ”zero

growth”, and thus charge-carrier trap free surface. A single missing ligand at one Cd atom

already results in a dangling bond, which, in turn, leads to a midgap state which can reduce

the luminescence quantum yield (QY) drastically (cf. Section 8.4). The same is observed

for a S or Se atom which has two or more dangling bonds [103, 139, 140, 125]. However,

∗∗Cf. Table 6.4 for additional information on the saturation.
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these dangling bonds are reactive centres, which should easily find a reaction partner for

stabilisation in a solution.

Thus, the question arises how these defects are compensated, thus, the particle is sta-

bilised. Therefore, following the saturation scheme zinc blende type structure, cuboctahedral

shaped CdS particles [CdmSn(SH)i]
q are generated by systematic saturation (cf. Table 6.6):

a) No saturation and only Cd-atoms at the surface,

b) No saturation and only S-atoms at the surface,

c) Structure of 2. and saturation of (···Cd)1−S to (···Cd)1−S−R

d) Structure of 3. and saturation of (···Cd)2−−S to (···Cd)2−−S−R

e) Structure of 4. and saturation of (···Cd)3
−−−S to (···Cd)3

−−−S−R which corresponds to a

complete saturation.

The number of the compensating charge†† is minimal for completely saturated structures. In

contrast, for partial or non-saturated structures it increases rather fast to values which could

not be compensated even in ionic solution. Therefore, two sets of these model structures –

one using the compensating charge and the other ignoring any compensation q are used for

investigations of their structural stability.

The nanoparticles structures are threaten with MD simulations, applying a NVT ensem-

ble with a MD time step of ∆t = 2fs and the temperature being controlled by a Berendsen

thermostat [154]. By using the simulated annealing technique [157], the structures are

slowly heated up to a temperature of 700K, then further propagated at this temperature

until equilibration and finally it is cooled down to 0K.

The results of this investigation are summarised in Table 6.6. All structures, with or

without charge result in stable structures, except for those having only Cd atoms at their

surface. For these particles the surface atoms fragmentise and form Cd clusters. If these

structures are not charged they balance their local structure at the surface by reconstruction,

forming also S–S and shorter Cd–Cd NN distances (cf. Table 6.6). Of course, these recon-

structions are less pronounced with increasing number of ligands (cf. Table 6.6 a)→e) ),

that balance the surface charge distribution.

In contrast, the initial CdS bulk structure – even that at the surface – is kept for the

nanoparticles structures which are additionally stabilised by a compensating charge q (cf.

Table 6.6). Nonetheless, within these results the structures missing surfactants, especially

that are completely bare, can be electronically stabilised by counter charge. In the present

case, the simple adding or subtracting of electrons (counter charge) adjust the electron

balance corresponding to the CdS bulk. This is only possible because of a homogenous

††Technically in the computation the number of electrons in modified, therefore electrons are added if the
charge of the structure is negative or subtracted for positive values.
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surface structure of only one atom type. It is not possible in case of inhomogeneous surface

structure, i. e., spherical structures (cf. previous two sections). In the most unfavourable

case of a stoichiometric, spherical nanoparticles the total charge is zero (cf. Table 6.4).

However, the local charge balance at the surface is alternating, which leads to an instable

surface structure.

From these results for the structural stabilisation of the CdS nanoparticles the following

can be summarised: The structure at the nanoparticles surface is stabilised by the local

electronic charge balance. This is realised through surfactants in the first instance and

charge q (counter-ions) secondly. If there are no counter-ions available this will lead to

distortions at the surface which may cause dangling bonds (and trapped states respectively).

Furthermore, the same can be stated for the case of a single saturation defect, with

only one ligand missing in the saturation shell, which also has been calculated, but not

presented explicitly. Further discussion and investigations of the impact of defects on the

optical properties of CdS nanoparticles are given in Section 8.4.
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Table 6.6: Systematic saturation with ligands and the impact on the structural stability of the
nanoparticles as well as the influence of the charge q (cf. Section 6.1.3): Results of a simulated
annealing MD study (Tmax = 700K) using the standard DFTB method. The nanoparticles struc-
tures are of cuboctahedral shape and having a zinc blende crystal structure. Further details the
computation cf. Section 6.3.3.

structure extra charge no extra charge

[CdmSn(SH)i]
q q=2(m−n)−i q=06=2(m−n)−i

a) No saturation and only Cd-atoms at the surface

[Cd13S4]
18+

[Cd55S28]
54+

[Cd147S92]
110+

stable a fragmented and rebuild surface

(Cd-Cd bonds), in core bulk struc-

ture stable

b) No saturation and only S-atoms at the surface

[Cd13S28]
30 –

[Cd55S92]
74 –

[Cd147S216]
138 –

stable rebuild surface (S-S bonds and

shorten Cd–Cd bonds a), in core

bulk structure stable

c) Saturation only (···Cd)1−S−R

[Cd13S16(SR)12]
18 –

[Cd55S68(SR)24]
50 –

[Cd147S176(SR)40]
98 –

stable rebuild surface (S-S bonds and

shorten Cd–Cd bonds a), in core

bulk structure stable

d) Saturation only (···Cd)2−−S−R and (···Cd)1−S−R

[Cd13S4(SR)24]
6 –

[Cd55S32(SR)60]
14 –

[Cd147S104(SR)112]
26 –

stable overall stable, but single distortion

at surface (S-S bonds and shorten

Cd–Cd bonds a)

e) completely saturated

[Cd13S4(SR)24]
6 –

[Cd55S28(SR)64]
10 –

[Cd147S92(SR)124]
14 –

stable overall stable, but single distortion

at surface (S-S bonds and shorten

Cd–Cd bonds a)

a The ”shorten” Cd–Cd bonds have NN distances of 3.6 − 3.8pm, which are in the shorter

than 4.1pm in CdS-bulk, but still much larger than ≈ 3pm in cadmium bulk.
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properties

With the help of theory and experiment the quantum confinement effect (QCE) was

found to govern the physical properties of semiconductor nanoparticles. On the one hand,

optical spectroscopy has been the most important method for experimental characterisa-

tion, e. g., cf. Refs. [18, 16, 158, 23, 159]. On the other hand, their electronic and optical

properties where studied by theory, e. g., cf. Refs. [14, 160, 122, 161, 162, 101, 121, 163,

164, 165, 166, 167, 126, 124, 125, 168, 169, 170, 102, 171]. However, the applied models

are in most cases neglecting the atomic structure of the nanoparticles at all or that of the

surfactants. If surfactants where included, the structures of the nanoparticles were relatively

small compared to the experimentally investigated ones. Thus, a complete picture, i. e., the

theory of those, that includes also the surface effects, is still lacking.

In the previous chapter it was shown, that the SCF-DFTB method is able to calculate

the electronic structure with a high level of accuracy and moderate calculation time. In the

following chapter it will be applied for the systematic investigation of the properties of CdS

nanoparticles with sizes up to r ≈ 2nm for the effective radius (Nat ≈ 2000). The results

will be compared to the previous work of Joswig et al. [171], who used the standard DFTB

method.

The influence of ligands on the surface atoms is studied by contrasting the calculated

electronic structures between non and completely saturated nanoparticles. Additionally,

the impact on the variation of the underlying crystal structure, as well as the shape of the

particles is studied.

7.1 Details to the calculation

All structures of the nanoparticles are modelled following schemes, which have been intro-

duced in Chapter 6. Unless, if not stated otherwise, the surface of the nanoparticles has

either no ligands attached (bare) or is completely saturated (R−−H, cf. 6.2.3).

For nanoparticles of sizes smaller than a radius r < 1.8nm) the relaxed geometries, are

used (cf. Section 6.3). The larger ones with sizes up to r ≈ 2nm are treated differently to

obtain their minimum energy structure: For the atoms in the core of the nanoparticles the

relaxed (using DFTB) crystal structure of CdS is used. By applying the DFTB method,
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these atoms are kept fixed at their positions and only the atoms in a surface region of

≈ 0.3nm thickness are considered in the relaxation.

Exceptions are the CdS nanoparticles with the rock salt crystal structure. Their geome-

tries are modelled, in the first instance similar to the above-mentioned ones by cut-outs of

the relaxed bulk structure. In contrast, all Cd, as well as, S atoms are kept fixed for the

bare, as well as, for the saturated particles. Thus, only the atomic positions of the ligands

are optimised.

Finally, the electronic structure of these nanoparticles is investigated by applying the

newly developed SCF-DFTB formalism in the approximate scheme, which has been intro-

duced and successfully tested in Sections 5.2.2 and 5.3.

For the determination of orbital populations and atomic charges the Mulliken technique

is applied [95]. Additionally, a spherical averaged orbital density is defined, with Nij being

the Mulliken gross population for the jth atom and ith orbital:

ρi(r) =
∑

j

Nij

(
2α

π

) 2
3

e−α(r−Rj)
2

(7.1)

The value of α is chosen in a way that illustrative figures result.

7.2 Electronic structure

In this section, the effects of no and complete surface saturation on the size dependence

of the electronic structure of CdS nanoparticles will be investigated in detail. Only one

set of structures of nanoparticles is chosen to allow a general survey on the effects of the

ligand: The underlying structure is that of the zinc blende modification. The composition

is stoichiometric∗ and the shape is spherical.

7.2.1 Surface ionicity

Recent investigations of the electronic structure of bare CdS nanoparticles by Joswig et al.,

have been using the standard DFTB method [102]. They result in a distinct ionicity of the

surface atoms, which are similar to the electronic properties found for surfaces of crystalline

CdS and CdSe [108, 107, 109]. Using the own SCF-DFTB, the analysis of the radial charge-

distribution of the nanoparticles indicates a surface region. This has a thickness of about

0.3nm (cf. Figure 7.1). In this region in a nanoparticle the charge transfer between Cd and

S atoms is much stronger than in the inner part.

Since this ionicity is caused by dangling bonds at the surface of the nanoparticle, a

complete saturation of the surface atoms the effect vanishes (cf. Figure 7.1): All over, the

∗The classification of stoichiometric and non-stoichiometric structures of CdS nanoparticles is given in
Section 6.1.
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Figure 7.1: Radial distribution of the Mulliken population for bare (CdS)m (blue symbols)

and saturated [CdmSn(SH)i]
2 (m−n)−i nanoparticles (black symbols) calculated with SCF-

DFTB. The number of valence electrons of the free neutral atoms (12 for Cd, 6 for S and

1 for H) is marked by the horizontal dashed lines. Further details on the structures and the

computation are given in Section 7.1.
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investigated series, the Cd atoms have a balanced interatomic charge distribution, i. e., the

CdS bulk governs. In analogy, this also applies for the sulphur atoms, except those which

are directly bound to a surfactant. In the detail, the three different population values that

result for these sulphur atoms, are due to the different chemical environment compared to

the bulk CdS (cf. Section 6.1.3). The influence on the electronic structure with respect to

different types of surfactants than R−−H is not addressed, but may be relevant.

SCF-DFTB and DFTB give qualitatively the same results:† the Mulliken charges of

the atoms in the core of the nanoparticles have the calculated values of the bulk. Thus,

with improved CT description of SCF-DFTB they are approximately twice as large as with

standard DFTB, and fit to the full DFT results (cf. Chapter 5).

7.2.2 Representing the electronic DOS of the CdS bulk

The calculated electronic DOS profiles (SCF-DFTB) of the bare ((CdS)m) and saturated

([CdmSn(SH)i]
2 (m−n)−i) CdS nanoparticles are given in Figure 7.2. For all structures the

electronic DOS profiles for the occupied states are rather similar. They, further, correspond

to the electronic DOS of the bulk structure (cf. Figure 7.7). However, the unoccupied states

of the saturated particles with different sizes are similar, while the non-saturated structures

differ qualitatively. Here, the most noticeable feature is the much smaller HOMO-LUMO

gap compared to the saturated structures and to the bulk. The analysis of the projected DOS

(pDOS) shows that these states can be addressed to low-lying 5s states of surface-located

Cd atoms with dangling bonds. Clear from Figure 7.3, these are lowered in energy compared

to the complete saturated structures, which result in smaller values of the HOMO-LUMO

gap.

The results for the electronic DOS of the bare structures are in agreement with

Joswig et al., who studied bare CdS nanoparticles with the standard DFTB method. More-

over, previous investigations on the electronic structure of CdS nanoparticles using different

theoretical models result in rather similar electronic DOS profiles, which also correspond to

the electronic DOS of the bulk structure [101, 102, 103, 104].

7.2.3 The QCE and the HOMO-LUMO gap

For nanoparticles of direct semiconductors the value of the HOMO-LUMO gap energy should

approximately represent the lowest optical excitation energy. Due to the quantum confine-

ment effect (QCE), an overall decrease of these values with respect to an increasing size of

the nanoparticles is observed experimentally (e. g., cf. Ref. [2]).

Using the SCF-DFTB method, the HOMO-LUMO gap energies ∆G of bare and full

saturated nanoparticles are shown in Figure 7.4 as a function of their diameter. Additionally,

†For the saturated structures this has been proven in this work, but is not further highlighted.
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Figure 7.2: Calculated electronic DOS of spherical CdS (zinc blende) nanoparticles: Bare

(CdS)m (blue curves) and completely saturated [CdmSn(SH)i]
2 (m−n)−i (black curves). The

values are broadened with Gaussian functions for better depiction. Further details on the

structures and the computation are given in Section 7.1.
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Figure 7.3: Calculated eigenvalue spectra of the states around the Fermi-level: MO energies

of bare (blue curves) and completely surface-saturated (black curves) are drawn pair wise for

increasing particle size corresponding to structures presented in Figure 7.2. The HOMO of

these structures is located between −6.7 and −6.2eV.
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Figure 7.4: Calculated HOMO-LUMO gap energies of spherical nanoparticles with zinc

blende structure: Bare (CdS)n (blue symbols) and complete saturation at the surface

[CdmSn(SH)i]
2 (m−n)−i (black symbols) using SCF-DFTB. Further details on the structures

and the computation are given in Section 7.1.
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the gap size is drawn as a function of

lim
nCd→∞

∆G

(
1− n

−1/3
Cd

)
= ∆bulk

G , (7.2)

with nCd being the number of Cd atoms, CdS pairs, respectively. The advantage of the

latter representation is the direct comparison to the band gap value of the bulk ∆bulk
G , with

lim
nCd→∞

(
1− n

−1/3
Cd

)
= 1. (7.3)

For bare nanoparticles, the gap energies are irregularly oscillating with increasing size

of the particles, but they show a weak overall decrease. These oscillations are due to the

varying number of singly bonded Cd atoms at the surface. For those structures with a

high number of these atoms the extrapolated HOMO-LUMO gap energy (7.2) for infinite

particle size (7.3) would asymptotically lead to a zero gap. Thus, the character of the surface

becomes metallic-like. Nanoparticles with a low number of singly bound Cd atoms at the

surface result in larger values for the HOMO-LUMO gap energy. Here, Eq. (7.3) results

in a non-zero gap for the bulk limit, as shown in Figures 7.4 and 7.8. The size of this

extrapolated gap is ≈ 0.7eV, which is still below the calculated value for the zinc blende

bulk with 2.2eV.‡ Thus, the experimentally observed QCE is not obtained for structures

without surface saturation.

However, these results are in qualitative agreement with the investigation of bare CdS

nanoparticles with the standard DFTB method [171]. Quantitatively, the obtained value of

the extrapolated HOMO-LUMO gap energy for the particles with a minimum number of

singly bound Cd atoms is double as large. This difference is of methodological origin, since

the applied standard DFTB method overestimates the band gap energies (cf. Section 5.1).

Nonetheless, the QCE for the HOMO-LUMO gap energy is obtained for complete surface-

saturated nanoparticles ([CdmSn(SH)i]
2 (m−n)−i). In Figure 7.4 the calculated gap energies

are depicted. For all structures the corresponding value decreases asymptotically towards the

calculated value of the bulk (2.2eV). This is clear from Figure 7.5. The absolute energy values

of the HOMO and LUMO trend asymptotically towards the valence band and conduction

band edge. Moreover, in this Figure 7.4 the electronic structure of CdS is directly compared

starting from the molecular level and toward the bulk limit: With increasing size of the

structures the ”condensation” of the electronic states takes place, which in the extended

bulk form bands. Here, the conduction band and the valence band show dispersion at the

Γ-point. This corresponds to spatial delocalisation of the electronic wavefunction. When

comparing this with the electronic DOS of the bulk Figure 5.3, the conduction band exhibit

the free electron character. A similar behaviour results for corresponding electronic DOS

of the finite structures. Here the lowest unoccupied molecular orbitals (LUMOs) have a

correspondingly low DOS. Nonetheless, the QCE is more pronounced for the LUMOs, than

‡cf. Section 5.3
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Figure 7.5: Size-dependent eigenvalue spectra (SCF-DFTB) from CdS-dimer to the bulk

bandstructure (zinc blende), with the valence band edge at −6.07eV (Γ−point). The struc-

tures (zinc blende) in between are of cuboctahedral shape. Further details on the structures

and the computation are given in Section 7.1.
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for the HOMOs.§ The spacing between the energy levels is much larger for the LUMOs,

than for the HOMOs.

The results of the HOMO-LUMO gap energy of completely saturated CdS nanoparticles

are in agreement with the measured values of the lowest absorption energies of the corre-

sponding, saturated experimental structures, e. g., cf. Ref. [16]). Moreover, they are in agree-

ment to investigations using empirical TB models or semi-empirical pseudopotential methods

for the calculations of non-saturated CdS (CdSe) nanoparticles, e. g., cf. [122, 172, 121, 168].

The authors excluded the dangling bond orbitals explicitly and the latter one used point

charges for compensating these dangling bonds. This explains the contrary results compared

to this work.

7.2.4 The frontier orbitals and reactivity

Detailed knowledge of the frontier orbitals, i. e., HOMO and LUMO, are important for

understanding the optical processes, but they also contribute as well to the understanding

of the reactivity of the nanoparticles, e. g., the binding of surfactants.

Therefore, spherical averaged orbital densities are calculated from the projections of

the atomic functions contributing to the HOMO and LUMO, which are obtained from SCF-

DFTB calculations. The results for bare and complete saturated CdS nanoparticles are given

in Figure 7.6: Independent of the size of the particles, the HOMO is spatially delocalised

over the structure. In contrast, due to the non-saturated Cd atoms the LUMO is localised to

a large extend at the surface atoms at dangling bonds. These results are in agreement to the

similar investigation, bare CdS nanoparticles using the standard DFTB method [102, 171].

As it has been shown in the previous section, at the surface the electronic structure is

destabilised due to the reduced coordination, which is compensated by increased ionicity and

lowering of the unoccupied MO energies (mid-gap states). In the framework of the hard and

soft acids and bases (HSAB) principle [143], the surface atoms are of increased reactivity:

The dangling bonds at the Cd atom(s) (mainly Cd 5s states) are electron acceptors (Lewis

acids). The S atoms are electron donators (Lewis bases).

In contrast, if the dangling bonds are completely saturated by surfactants the spatial

localisation of the LUMO at the surface vanishes. This fact is clear from the calculated

spherically averaged orbital densities of the HOMO and the LUMO in Figure 7.6). Both

frontier orbitals are fully delocalised over the whole nanoparticle. A projection to the atomic

contributions shows, that the HOMO consists mainly of S 3p functions, whereas Cd 5s

functions mainly participate in the LUMO. This delocalisation is similar to the electronic

structure of the valence and conduction band at the Γ−point CdS bulk (cf. Figure 7.5).

Thus, these completely saturated structures are less reactive, since in fabrication

surfactants are also used to decrease their reactivity. However, dangling bonds are

§The LUMOs are shifted to higher energies, while the HOMOs are shifted down, respectively.
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Figure 7.6: Spherically averaged orbital densities of the HOMO (downward pointing) and

the LUMO (upward pointing curves): Bare (CdS)n nanoparticles (blue curves) and complete

surface-saturated nanoparticles [CdmSn(SH)i]
2 (m−n)−i (black curves). The values are broad-

ened with Gaussian functions for better depiction. Further details on the structures and the

computation are given in Section 7.1.
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Figure 7.7: Calculated electronic DOS of bare (left column) and complete surface-saturated

(right column) nanoparticles representing the size-spectrum radii of r ≈ 2 (black curves)

and of the corresponding bulk modification (red curves). The energies of the HOMO and

respectively valence band energies are the range of −6.7 and −6.2eV. Further details on the

structures and the computation are given in Section 7.1.

observed at both atom types for experimentally stable surface-saturated nanoparticles

[103, 123, 139, 140, 125].

In general, the properties of this type of nanoparticles are depending sensitively on

variations of the surface structure, which predominantly affects those properties, which

are connected to the frontier orbitals, e. g., optical properties. On these we are focus in

Section 8.3.

7.3 Structure and shape

In this section the electronic structure of the CdS nanoparticles are investigated focusing on

the influence of crystal the structure and their shape. Thus, additionally to the zinc blende

structure the wurtzite, as well as, the high-pressure rock salt phase will be considered.

The influence of the shape is studied including spherical, cuboctahedral and tetrahedral

geometries.

At first, the eigenvalue spectra of bare and fully surface-saturated, spherical nanopar-

ticles based on the three modifications of bulk CdS are calculated with the SCF-DFTB

method. The resulting electronic DOS of these structures in the size range of the radii

r = 0.5, . . . , 2.0 nm are given in Figure 7.7. For comparison, the corresponding electronic

DOS profiles of the bulk are overlaid: In the first approximation the curves of the non-
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saturated particles [CdS]m with m = 1, . . . , 600 show no significant difference with respect

to their different underlying structures. But the comparison to the electronic DOS of their

corresponding bulk structure shows, that the electronic states, and especially that around

frontier orbitals, deviate. In detail, the variation of the values of the LUMO energy caused

by dangling bonds at surface-located Cd atoms is independent of the underlying crystal

structure of the nanoparticles.

Secondly, calculations are repeated for complete saturated nanoparticles. These are of

the composition [CdmSn(SH)i]
2 (m−n)−i with m = 1, . . . , 600. The obtained electronic DOS

profiles are very similar to each other and they are rather similar to the corresponding bulk

structures. Minor deviations are caused by additional contributions of the ligands (R=H)

at approximately 9.25eV. These are slightly more distinctive for the nanoparticles with rock

salt structure. For this structure type the states at 7.5eV originate from S atoms at the

surface linking to the surfactants with a high coordination of cadmium providing an excess

electronic density (cf. Figure 7.7).

Previous investigations of CdS also give similar agreement of the electronic DOS between

different sized nanoparticles and the corresponding bulk [105, 106, 107, 108, 109, 110, 102].

Furthermore, the trend of the HOMO-LUMO gap energies with respect to the size and

the crystal structure is clear from Figure 7.8: Qualitative and nearly quantitative agreement

of the gap energies is obtained for the zinc blende and wurtzite structure (cf. Section 7.2.3).

Thus, the structural and energetic similarities of the bulk are achieved also for the nano-size

regime. The curves of the saturated particles with the rock salt structure show the same

decaying behaviour. However, minor deviations are emerging, which can be addressed to the

non-relaxed atomic geometries (cf. Section 7.1). Further refinement could be obtained by

simulating these structures at experimental conditions [173, 174, 22], e. g., using a pressure

bath.

Also for particles, which miss any surface protection the energy values of the HOMO-

LUMO gap are independent of the underlying crystal structure. As shown in Figure 7.8,

these result in much smaller values, which are below those of the corresponding bulk. They

show an irregular oscillating behaviour for all three crystal structures (cf. Section 7.2.3).

An influence of the shape of the nanoparticles is also not obtained. The calculated

energy values of the HOMO-LUMO gap of completely saturated structures with spherical,

cuboctahedral and tetrahedral shape are summarised in Figure 7.9. The trend curves of the

gap energy with respect to the size of the clusters coincide.¶

Finally, the investigations show, that the QCE is independent of the crystal structure

and the shape, but essentially depend on the surface structure of the nanoparticles.

¶Here, the number of Cd atoms is used to specify the size of the cluster.
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the panel the gap energies are plotted with respect to the radius r of the structures, while on
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are given in Section 7.1.
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8 Optical properties of CdS nanoparticles

In the previous chapters it has been shown, that the electronic structure of CdS nano-

particles is sensitive to the underlying atomic structure. Especially that of the surface has a

major impact on the orbitals closest to the Fermi level. Hence, the role of surface passivation

also becomes of elementary relevance for the optical properties of the particles.

Extensive experimental investigation of the optical processes in semiconductor nanopar-

ticles have been made possible through the availability of monodisperse size fractions [16].

The results of these studies and those obtained from theoretical models give a clear evi-

dence, that the electronic states located at the surface of the nanoparticles are involved in

the optical process [175, 176, 103, 107, 101, 109, 165, 125]. Defects in the surface saturation

are known to generate dangling bonds, which in turn cause trapped states. In contrast,

the best efficiency in the photoluminescence quantum yield, a so-called ”bright point”, was

reported, for nanoparticles with an optimal, defect-free and thus a charge-carrier trap-free

surface structure [25, 26, 27].

In the following, the focus is set on the influence of the surface states and their passivation

with respect to the optical excitation spectra of CdS nanoparticles. Therefore the calculation

scheme of the γ-approximation is applied, which in a linear-response scheme taking into

account collective effects and selection rules (cf. Section 3.8). Moreover, the underlying

structure becomes of interest, if the type of semiconductor changes from a direct band gap

semiconductor to an indirect one [173, 174, 22].

At first, the γ-approximation is tested for the CdS system. Therefore a set of smaller

clusters is chosen, from which the structure is known experimentally (cf. Chapter 6).

8.1 Details of the computation

For the investigation of the optical properties of CdS nanoparticles the same atomic struc-

tures are used, as in the previous chapter. The corresponding details are given in Section 7.1.

For the calculation of the absorption spectra the γ−approximation is applied, which

has been introduced in Section 3.8. The MO energies and coefficients, that are needed,

have been calculated with the SCF-DFTB method. The ωI in Eq.(3.27) denote the linear-

response excitation energies, and ωKS are the single particle excitation energies of the static

Kohn-Sham calculation. These are also constructed from the SCF-DFTB eigenvalues and

eigenvectors, include selection rules, but no collective effects. The oscillator strengths f I

are calculated within a dipole approximation [cf. Eq. (3.36)]. Likewise, the single-particle
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Figure 8.1: Calculated eigenvalue spectra of the MO’s close to the Fermi level: Small

surface-saturated (black curves) nanoparticles and two with missing four ligands each (blue

curves). More information in the structures are given in Table 8.1 and the corresponding

optical excitation spectra in Figure 8.2.

spectra are obtained neglecting the coupling-terms. The presented spectra are broadened

by Gaussian functions.

8.2 Reference calculation – small CdS nanoparticles

8.2.1 Onset excitation

The clusters of the test set are summarised in Table 8.1 including the appropriate references.∗

Further the calculated lowest excitation energies ωI and ωKS are summarised and compared

to the corresponding experimentally determined values. The calculated MO eigenvalue

spectra of the states closest to the Fermi level are given in Figure 8.1.

In agreement with the experimental values, the calculated ones are decreasing with in-

creasing number of cadmium atoms, and Cd−S pairs respectively. Their absolute values

result in the range of 5.5−3.4eV, which is above the bulk limit (2.58eV [11]). In general,

the calculated lowest singlet-excitation energies ωI vary within ±20% compared to the ex-

perimental values. These deviations may be due to several reasons: First, model structures

are used, which are saturated with hydrogen atoms instead of thiol-phenolate or aliphatic

thiolate ligands, as in the experiment. Thus, the influence of larger ligand molecules on the

optical properties is not covered. The deviations are especially large when the surfactant is

a chromophore (e. g., phenolate) itself that is incorporated in the optical process [141]. Sec-

ond, the overbinding effect of the LDA has to be considered, as the absolute value for band

gap of CdS is underestimated by 10% compared to the experiment by using SCF-DFTB.

∗A general structure classification of small CdS nanoparticles is given in the Appendix A.
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Table 8.1: Calculated lowest excitation energies of small CdS nanoparticles. The corresponding

cluster structures are depicted in Figure 6.1. Further details on the computation and on the used

symbols are given in Section 8.1.

Compound Structurea ωKS [eV] ωI [eV] ωexp [eV] Reference

[Cd(SR)4]
2 – mix 5.39 5.54 5.17b, 4.40c [146]

[Cd4(SR)10]
2 – tetr 4.81 4.90 4.98c [147, 146]

[Cd4S(SR)10]
4 – wz 4.97 5.04 [24]

[Cd4S(SR)12]
6 – cubo 4.80 4.98 4.77b [122]

[Cd8S(SR)16]
2 – mix 4.67 4.72 4.43b [148]

[Cd10S4(SR)16]
4 – tetr 4.54 4.59 4.88,b 4.25c [113, 114, 146]

[Cd13S4(SR)24]
6 – cubo 4.35 4.43 [122]

[Cd17S4(SR)28]
2 – mix 4.22 4.27 4.28b [119]

[Cd20S13(SR)22]
8 – tetr 4.25 4.29 3.53c [149]

[Cd28S13(SR)42]
12 – cubo 3.91 3.97 [122]

[Cd32S14(SR)36]
0 mix 3.75 3.75 3.82,b 3.46c [120, 118]

[Cd32S14(SR)40]
4 – mix 3.93 3.99 d

[Cd35S28(SR)28]
14 – tetr 3.99 4.03 3.82c [149]

[Cd54S32(SR)48]
4 – mix 3.00 3.04 3.70b

[Cd54S32(SR)52]
8 – mix 3.66 3.71 d

[Cd55S28(SR)64]
10 – cubo 3.57 3.63 [122]

[Cd92S55(SR)92]
18 – cubo 3.31 3.36 3.35b [122]

a The abbreviations denote different shapes and crystal structures: wz: wurtzite; tetr: zinc
blende tetrahedron; cubo: zinc blende cuboctahedron; mix: mixed zinc blende-wurtzite.

b The ligands are aliphatic thiolates.
c The ligands are thiophenolates.
d These structures are modelled by adding four additional ligands to each of the edges of the

experimental structures [Cd32S14(SR)36]
0 and [Cd54S32(SR)48]

4 – .
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Figure 8.2: Calculated linear-response singlet-absorption spectra (γ-approximation) of small

surface-saturated CdS nanoparticles (black curves). The trapped states are depicted with

scaled oscillator strength. Additionally, the corresponding spectra for the complete saturation

structures [Cd32S14(SR)40]
4 – and [Cd54S32(SR)52]

8 – are added (red colour). All curves are

normalised with respect to the number of Cd atoms. For one structure the excitation spectra

within single particle scheme is given (grey colour). Further details on the used symbols and

computation are given in Section 8.1.

This effect is hardly compensated by the γ-approximation, which is known to overestimate

the singlet-excitation energies.† Furthermore, solvent effects are found to have no signifi-

cant impact on the electronic and optical properties and can be neglected in the calculation

[168]. In summary, the calculated values are well within the error bars of the experiments

(cf. Figure 8.12).

8.2.2 Absorption spectra

The calculated singlet-absorption spectra of the test set are shown in Figure 8.2. Beside

the energies of the onset excitation, the most eye-catching feature in almost all spectra is

the high oscillator strength of the onset absorption peak. These excitations are of excitonic

character.‡ The hole wavefunction consist mainly of contributions from the HOMO−i with

†cf. Section 3.8.3
‡An electron-hole pair is names ”exciton”.
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Figure 8.3: Frontier orbitals of [Cd32S14(SR)40]
4 – : The four missing ligands at the vertices

of the structure [Cd32S14(SR)36]
0 (cf. Figure 8.4) are added. The optical properties are dis-

cussed in Sections 8.2 and 8.4. More information in the structures are given in Table 8.1 and

the corresponding optical excitation spectrum in Figure 8.2. The SCF-DFTB MO energies

are depicted in Figure 8.1. For better depiction the MO’s (SCF-DFTB) are approximated

by the projected atomic contributions (sulphur yellow; cadmium grey colour) to the orbital

(Mulliken-population analysis) represented as spheres centred at the corresponding atom.
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i = 0, 1, 2, whereas the electron wavefunction is exclusively from the LUMO. The HOMO−i
are almost degenerated, as they span the maximum energy range of 1meV. A projection

of the atomic contributions to these orbitals using the Mulliken population analysis shows,

that all HOMO−i and LUMO are spatially delocalised over the nanoparticle. Thus, both,

electron and hole wavefunctions are of s character (cf. Figures 8.3 and B.4). The con-

tributions to the occupied orbitals HOMO−i originate 80 % from S atoms (3p functions)

and 20% Cd atoms (5s5p functions), whereas that of the LUMO are 70% from mainly Cd 5s

functions and 30% S 3p3d functions. For the latter ones are to a large extend located at the

surface S atoms to which the ligands bind, as visualised in Figure B.5.

8.2.3 Surface states

The result changes for the nanoparticles with dangling bonds, since each of the four missing

ligands cause ”trapped states”. These are located at the non-saturated Cd atoms at the

surface, which can be directly seen in Figures 8.4 and B.3 showing the atomic contributions

to MO’s.§ Clear from Figure 8.2, their onset absorptions have lower excitation energies and

almost negligible oscillator strength. However, a strong excitonic absorption, that corre-

spond to the onset peak in the spectra of the completely saturated structures, is obtained

for both structures, with slightly higher excitation energies, but reduced oscillator strengths.

Here the following MO’s contribute to the hole and electron wavefunction: HOMO−i, with

i = 0, 1, 2 and LUMO+4. Further investigations of saturation defects (dangling bond(s))

and their impact on the optical properties follow at the end of this chapter in Section 8.4.

Already, this small nanoparticles exhibit an excitonic character in the onset excita-

tion. This is due to the same spatial delocalisation of the MO’s involved in the transition

(HOMO−i and LUMO) and, thus, a maximum overlap of the excitonic wavefunction.

In contrast, collective effects are of minor importance. Here the excitation spectra cal-

culated with the single particle (SP) scheme fit to the γ-approximation. The excitation

energies ωKS (SP) underestimate the ωI by ≤ 2% as summarised in Table 8.1. The oscil-

lator strengths are about one third larger. Beside the physical relevance, the computation

time can be reduced drastically especially in the case of very large structures, since the most

time-consuming diagonalisation of a response matrix is circumvented.¶

8.3 Optical properties of nanoparticles with complete and no surface

saturation

Corresponding to Chapter 7, we have now calculated the optical absorption spectra with

the linear-response scheme. The obtained singlet-excitation spectra are summarised in Fig-

§The corresponding eigenvalue spectra of [Cd32S14(SR)36]
0 and [Cd54S32(SR)48]

4 – are shown in Fig-
ure 8.1.

¶cf. Section 3.8.3
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Figure 8.4: Frontier orbitals of [Cd32S14(SR)36]
0 with saturation defect: The four missing

ligands at the vertices cause dangling bonds which affect the optical properties. These are

discussed in Section 8.4). More information in the structures are given in Table 8.1 and

the corresponding optical excitation spectrum in Figure 8.2. The SCF-DFTB MO energies

are depicted in Figure 8.1. For better depiction the MO’s (SCF-DFTB) are approximated

by the projected atomic contributions (sulphur yellow; cadmium grey colour) to the orbital

(Mulliken-population analysis) represented as spheres centred at the corresponding atom.
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Figure 8.5: Calculated linear-response singlet-excitation spectra (ωI) of bare (blue curves)

and completely surface-saturated (black curves) zinc blende derived, spherical CdS nano-

particles within the size range of r = 0.5 − 1.5nm. The dotted curves correspond to the

single-particle spectra (ωKS). The corresponding eigenvalue spectra of the states closest to

the Fermi level are depicted in Figure 7.3. Further details on the structures and the compu-

tation are given in Section 8.1.



8.3 Optical properties of nanoparticles with complete and no surface saturation 77

ure 8.5: Instead of depending on the particle size, the onset excitation energies of the un-

saturated nanoparticles show irregular fluctuations, and thus do not follow the QCE. This

is caused by excitations involving the surface states. Their excitation energies are below

the experimental bulk band gap (2.58eV [11]), as well as for the corresponding saturated

nanoparticles [135]. The oscillator strength of those low-lying excitations are very weak, but

increase with the number of unsaturated Cd atoms.

These results are in agreement to Joswig et al., who used similar structures to calculate

the optical properties with the γ-approximation scheme [171]. They stressed that these low-

lying excitations have a collective character, as observed experimentally in metal clusters

as surface plasmon excitations [177] or an exciton, which is a common excitation in direct

band-gap semiconductors. The differences between the excitation energies in this work

and in Ref. [171] can be addressed to the different methods that are used to determine the

electronic ground-state properties.‖ However, the resulting picture is qualitatively the same:

Thus, a large number of excitations is located at smaller energies than the lowest one of the

corresponding bulk structure. Moreover, these low-lying excitations in the spectra, but also

excitations at higher energies, exhibit rather weak oscillator strengths. Hence an evidence

for a plasmon- or an exciton-like character is not given.

Continuing the study with the same, but completely surface-saturated structures, the

principle features are reproduced, that were obtained for the test set (cf. previous section).

The calculated excitation spectra are given in Figure 8.5. The energy of the onset excitation

is located above the corresponding value of the bulk and is decaying toward it, which is shown

in Figure 8.12 and will be discussed later. Furthermore, over the large size-range all spectra

have exhibit the excitonic onset peak with large oscillator strength. The transition is of s−s
type, which corresponds with that of the test set of small nanoparticles.

Additionally, a second excitonic absorption peak of similar oscillator strength occurs in

the direct neighbourhood of the onset peak at higher energies. This is not observed as a

feature of the smaller structures, but rather becomes characteristic for a particle radius larger

than 1nm. This transition is mainly of p−p type. Similar to the first excitonic excitation,

this second has the following contributions: The hole wavefunction consist mainly of the up

to fivefold degenerated HOMO−i with i = 3, 4, 5, 6, (7) and the electron wavefunction of the

threefold degenerated LUMO+j with j = 1, 2, 3. The wavefunctions of these MO’s have a

symmetry corresponding to a hydrogen 1p function.

In contrast to the onset excitation, this second one has also minor contributions from

transitions which are collectively excited. These originate form occupied MO’s with lower

energy to the LUMO (cf. Figure 8.6). Moreover, this intermixing has a relevant contribution

to the absorption. With an increase of the excitation energy the corresponding oscillator

strength of these higher-lying transitions is also increasing. It further increases with the

‖Herein SCF-DFTB is used. In contrast, Ref. [171] uses standard DFTB which results in orbital energies,
that are about twice as large as the energy values obtained in this work (cf. Section 7.2.3).
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Figure 8.6: Scheme of the electronic excitation: Dis-

cretisation of the excitation spectra in semiconductor

nanoparticles (saturated CdS) due to the confinement

of the unoccupied orbitals (QCE).

particle size. This effect is due to the increasing density of the electronic states (forming

band a in the bulk limit). Further, this intermixing of several single transitions at higher

energies does not allow any assignment of further angular moments.

In summary, the observed discretisation of the excitonic absorption peaks in the calcu-

lated spectra is directly related to the QCE. For lower particle sizes (r ≤ 1nm) only the

angular moment s of the MO wavefunction is observed, whereas, larger structures seem to

allow also higher values. This angular momentum series up to p is shown for CdS nanopar-

ticles in Figures B.5, 8.7 and 8.11 for different sizes and shapes of the structures.

A similar behaviour is known from the Jellium-model for metal clusters [145], which can

be interpreted in the sense of molecular orbital theory [178, 179]. However, for semiconduc-

tors the confinement affects mainly the unoccupied orbitals. Thus, the absence of ”magic

numbers” for certain stable cluster or nanoparticle structures is obvious.

8.3.1 Underlying structure

It has been shown in the previous chapter, that nanoparticles derived from the zinc blende

and wurtzite modification isomorphs exhibit almost identical electronic properties. The

impact of the structure on the optical properties of these structures is now studied in the

following.

The calculated singlet-excitation spectra of particles with wurtzite structure are shown in

Figure 8.8. Qualitatively, they are rather similar to that of the zinc blende structures in Fig-

ure 8.5. The differences are marginal: For the wurtzite type structures the onset excitation
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Figure 8.7: Frontier orbitals in a cuboctahedral confinement: The electronic wavefunctions

of the MO’s closest to the Fermi level show a spatial angular momentum splitting, which is

shown exemplarily for [Cd309S216(SH204)]
18 – . For better depiction the MO’s (SCF-DFTB)

are approximated by the projected atomic contributions, represented as spheres centred at the

corresponding atom (sulphur yellow; cadmium grey colour). The corresponding eigenvalue

spectrum is given in Figure 7.5 and the optical excitation spectrum in Figure 8.10. Additional

details of computation are given in Section 8.1.
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Figure 8.8: Calculated linear-response singlet-excitation spectra (ωI) of completely surface-

saturated (black curves) wurtzite derived, spherical CdS nanoparticles within the size range

of r = 0.5 − 1.5nm. The dotted curves correspond to the single-particle spectra (ωKS).

Further details on the structures and the computation are given in Section 8.1.
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Figure 8.9: Calculated linear-response singlet-excitation spectra (ωI) of completely surface-

saturated (black curves) rock salt derived, spherical CdS nanoparticles within the size range of

r = 0.5− 1.5nm. The dotted curves (exemplarily shown in the lower right panel) correspond

to the single-particle spectra (ωKS), which for the saturated structures are identical to the

ωI . Further details on the structures and the computation are given in Section 8.1.

is a double peak with a splitting smaller than 0.1eV. It is caused by the lowered symmetry

of the wurtzite structure, which reduce the degeneracy of the HOMO. Respectively, this

feature continues in the spectra also for the second and higher excitonic absorption peaks

compared to the zinc blende phase.

However, the characteristics of the optical property of the semiconductor changes

completely, when the underlying structure is transformed to the rock salt modification

[22, 173, 174]. Figure 8.9 shows the calculated spectra of completely saturated spherical

nanoparticles with this crystal structure. According to the experiment, their spectra look

typical for an indirect semiconductor: The oscillator strength of the lower excitations is

reduced for some orders of magnitude. The single excitations are close in energy, that ef-

fectively a continuous, featureless spectrum arises. Thus, no excitonic peak is observed.

However, the onset excitation energies of the nanoparticles with compete saturated surface

decrease with increasing particle size and, thus, following the QCE.
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Figure 8.10: Calculated linear-response singlet-excitation spectra of surface-saturated CdS

nanoparticles with a different shape and size: spherical (left column), cuboctahedral (middle

column) and tetrahedral (right column). The underlying structure of the particles is of zinc

blende type. Further computational details are given in Section 8.1.

8.3.2 Influence of the particle shape

The results of the previous sections have shown that in a spherical confinement the wave

functions of the orbitals closest to the Fermi -level feature the hydrogen angular momenta.

Since a different confinement may influence the optical properties of the nanoparticles the

influence of their shape is investigated below.

In Figure 8.10 the calculated excitation spectra of completely surface-saturated CdS

nanoparticles are shown, which have spherical, tetrahedral and cuboctahedral geometries

and zinc blende structure: In general, all optical properties, that have been found for the

spherical geometries are reproduced for the other two shapes. The spectra of spherical and

cuboctahedral nanoparticles are almost identical, since their structures have only minor

differences. These are more pronounced for the smaller nanoparticles. While the spherical

structures are centred at a Cd-S NN bond, the cuboctahedral (and tetrahedral) ones have a

Cd atom at the central position.∗∗ However, for particles with a similar number of Cd atoms

and respectively volume the shape has no influence on the onset excitation energy (cf.

Figure 8.12). Moreover, this holds also for the higher excitations in the spectra.

Furthermore, the strong oscillator strengths of tetrahedral structures is about half as

high as that of the spherical and cuboctahedral ones. This is independent from the size of

the particle, but is directly coupled to the shape. Clear from Figure 8.11, confinement in

∗∗cf. Section 6.1.2
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the tetrahedral environment is different and the effective overlap between electron and hole

wavefunctions is smaller.

8.3.3 QCE of the onset excitation

In Figure 8.12 the lowest excitation energies of the CdS nanoparticles are summarised with

respect to the particle size. The calculated values are contrasted with experimental data,

which have been obtained for small (cf. Section 8.2) and larger [135, 136] sized particles: In

general, these curves are well reproduced by the computed values. When extrapolating the

particle size toward the bulk limit, the experimentally observed asymptotic decay toward the

lowest absorption energy of the bulk is also reproduced. The calculated values underestimate

the experimental ones by 10%, which is mainly due to the LDA overbinding effect. Further

reasons for the deviation have been discussed in Section 8.2.

However, without this systematic error the calculated lowest excitation energies would fit

to the experimental values, which correspond to the alkylthiol saturated nanoparticles (cf.

Figure 8.12). The deviation for thiophenol saturated clusters can be addressed to the direct

incorporation of these ligands in the optical processes of the onset excitation [180, 141].

Moreover, clear from Figures 8.5, 8.8 and 8.9 the single-particle scheme represents an

alternative for the computation of the excitation spectra. Especially the onset excitation

are reproduced compared to the γ−approximation (ωI). While for the small clusters these

values are underestimated by 2%, with increasing particle size of the particles this error

is decaying. This result is in agreement with TD-LDA investigations of CdSe particles

[155]. Thus, for large nanoparticles the single-particle approach allows the efficient, as well

as, accurate computation of the excitation spectra compared to linear response schemes

(TD-DFRT).

8.4 Impact of dangling bonds on the optical properties

The investigation of the structural properties in Section 6.3.3 has been shown, that the

charge q as well as the presence of dangling bonds is of crucial relevance for the local

stabilisation of the surface of the nanoparticles.

In a first investigation the importance of q for the optical properties is highlighted:

The optical excitation spectra of two sets of completely saturated CdS nanoparticles

[CdmSn(SH)i]
q, one with q=2(m−n)−i and the other with q=0, and 2(m−n)−i6=0 are cal-

culated using the γ-approximation. The obtained singlet-excitation spectra are depicted in

Figure 8.13. Only for the structures with q=2(m−n)−i characteristic spectra are obtained.

The structures with q=0, for 2(m−n)−i6=0 have numerous excitations at very low energies

with large oscillator strengths. For excitation energies, which are higher than the onset

excitation of the charged structures, the spectra similarly continue.



84 8 Optical properties of CdS nanoparticles

Figure 8.11: Frontier orbitals in a tetrahedral confinement: The electronic wavefunctions

at of the MO’s closest to the Fermi level show a spatial angular momentum splitting, which

is shown for [Cd364S290(SH290)]
108+. For better depiction the MO’s (SCF-DFTB) are ap-

proximated by the projected atomic contributions, represented as spheres centred at the cor-

responding atom (sulphur yellow; cadmium grey colour). The optical excitation spectrum is

given in Figure 8.10. Additional details of computation are given in Section 8.1.
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Figure 8.12: Size dependence of the lowest excitations of [CdmSn(SR)i]
q nanoparticles with

respect their surface saturation: Upper panels: Calculated and experimental values of small

nanoparticles (cf. Table 8.1). Middle panels: Calculated values of spherical (sph), cuboctahe-

dral (cubo) and tetrahedral (tetr) shaped nanoparticles, as well as, zinc blende (zb), wurtzite

(wz) and rock salt (rs) type structure. Lower panels: Comparison of the calculated to exper-

imental values of comparable nanoparticles structures with different saturation (SPh [135]

and SCHx [136]). The abbreviations in the legends denote the following: SH R=H atom,

SPh R=Phenyl and SCH x R=Alkyl. Further details the computation cf. Section 8.1.
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q with

q=2(m−n)−i while blue curves to nanoparticles with q=0. Further computational details

are given in Section 8.1.

Furthermore, in a second investigation the impact of single dangling bonds is highlighted.

Therefore, single surfactants are removed explicitly from distinct positions at the surface of

the nanoparticle [Cd147S92(SH124)]
14 – : ††

a) Missing one ligand R at (···Cd)1−S−R causing a dangling bond (···Cd)1−S

b) Missing one ligand R at (···Cd)2−−S−R causing a dangling bond (···Cd)2−−S

c) Missing one ligand R at (···Cd)3
−−−S−R causing a dangling bond (···Cd)3

−−−S

d) Missing one ligand S-R at (···S)3
−−−Cd−SR causing a dangling bond (···S)3

−−−Cd.

The calculated singlet-excitation spectra are depicted in Figure 8.14. For spectra of the

structures with dangling bonds at a S atom (a,b and c) the result is in complete agreement

to that of the completely saturated nanoparticles (cf. Figure 8.13).

In contrast, for the nanoparticles with a dangling bond at a Cd atom (d) the impact

on the optical properties is larger. Despite the consideration of q, a sub-band gap state

is created, which in the absorption spectra causes an excitation slightly below the onset

excitations with weak oscillator strength. According to the participation analysis of the

MO’s close to the Fermi energy, the sub-band-gap state is located at exactly the introduced

saturation defect (cf. Figure 8.15. The next higher states show again the characteristic

spatial delocalisation, as well as the angular moment dependence of the electronic wave-

function. However, the LUMO+1, which corresponds to the electron wavefunction in the

first excitonic absorption, has also large contributions from the surface defect. Thus, the

oscillator strength of all excitonic absorptions is reduced by approximately 20%, by this

single saturation defect.

††For the herein used nomenclature cf. Section 6.1.
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Figure 8.14: Impact of a single defect in the saturation on the optical excitation spectra:

Calculated linear-response singlet-excitation spectra of surface-saturated CdS nanoparticles

with cuboctahedral shape. The numbering of the panels (a,b,c and d) refers to items in

Section 8.4. Further computational details are given in Section 8.1.

Similarly, results are found for the small tetrahedral shaped nanoparticles, which have

been investigated in Section 8.2. These miss each the four surfactants (corresponding (d))

at the vertices, as well as, further ligands at the faces of the tetrahedron (corresponding to

(c)). Hence, in general only dangling bonds at the Cd atoms influence the optical absorption

properties.

Alternatively, the experimental results of Lifshitz et al. [175, 176] on the excitation relax-

ation processes for CdSe systems suggest the presence of a sub-band-gap state with a clear

dependence on the nanoparticle structure. The authors argue that the recombination takes

place at a low-symmetry site, such as one near the surface, and, furthermore, that the hole

is delocalised, whereas the electron is localised at the surface. Accordingly, Bawendi et al.

[103] observed by optical hole burning and photoluminescence measurements that the band-

edge luminescence is from a surface-trapped state and not from the exciton state. These

experimental observations are in agreement with the results of the present work.
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Figure 8.15: Frontier orbitals with a localised surface state (dangling bond): CdS cuboctahe-

dral nanoparticle [Cd147S92(SH123)]
13 – , which is missing a single −SH at a Cd atom. For

better depiction the MO’s (SCF-DFTB) are approximated by the projected atomic contribu-

tions, represented as spheres centred at the corresponding atom (sulphur yellow; cadmium

grey colour). The corresponding optical excitation spectra is given in Figure 8.9.
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After the discussion of the properties of single CdS semiconductor nanoparticles, we will

focus now on the effects due to their organisation. Nanocrystals are potential candidates for

application as building blocks in electronic and optical devices. Thus, solvent-free particles

(i. e., particles in a non-liquid phase), either deposited on a substrate or incorporated into a

solid phase, are advantageous to obtain adequate material handling. Some effort has been

made to organise semiconductor nanoparticles [181, 182, 183, 184, 185, 186]: Weller and co-

workers have synthesised tetrahedral CdmSn nanoparticles organised in a tetragonal super-

structure [119, 120, 187, 188]. Their building-block structures are similar to those reported

previously [117, 118], but owe different organic ligands for stabilisation. The stoichiometries

within the super-network are Cd17S4(SCH2CH2OH)26 and Cd32S14[SCH2CH(CH3)OH]36.

Their non-saturated counterparts are Cd17S32 and Cd32S50. The corresponding structures of

single clusters have been investigated in this work (cf. Section 8.2). These nanoparticles have

a tetragonal shape and are connected by shared corner atoms to form a three-dimensional

network with a diamond-like super structure. Both, the single tetrahedron and the unit cell

of the superstructure are depicted in Figure 9.1 for Cd17S32 exemplarily.

9.1 Details of the calculations

The structures of the single clusters and those of the superstructures are relaxed in their

geometries with MD simulations. Using the standard DFTB scheme the MD simulation is

carried out in an NVT ensemble with the following options: MD temperature T = 0 K, which

is controlled by a Berendsen thermostat [154] applied to each atom independently, and a

MD time step ∆t = 2 fs. Thus, the final maximal gradient has a value below 10−4 Ha/Bohr.

The electronic structure is calculated with the own SCF-DFTB scheme. The correspond-

ing details of these calculation are given in Sections 5.2.2 and 7.1.

9.2 Structural properties

From the performed calculations on saturated and unsaturated tetrahedral CdS clusters,

both in the gas phase and in the tetragonal superstructure the following results have been

obtained: In the singly unsaturated clusters, strong deformations are observed, which are

caused by the structural relaxation. However, less charge-transfer within the single cluster

is observed when saturating the dangling bonds at the surface with hydrogen atoms and,
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a) b)

Figure 9.1: a) Single building block [Cd17S4(SH)26] and b) the arrangement of eighth single

clusters as periodic super-structure [Cd17S4(SH)26]
3d
∞ in a unit cell. Cd and S are shown as

dark grey and light grey, respectively. The ligands are approximated by H atoms which are

represented by white spheres.
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Figure 9.2: Radial distribution of the Mulliken gross population: Cd17S32 and

[Cd17S4(SH)28]
2 – [(a) single tetrahedron, (c) periodic structure], and Cd32S54 and

[Cd32S14(SH)40]
2 – [(b) single tetrahedron, (d) periodic structure]. Open circles and crosses

mark atoms in the unsaturated and the saturated clusters, respectively. The dashed lines

mark the number of valence electrons of the single atoms in Cd (12), S (6) and H (1).

moreover, the structural relaxations are marginal with respect to the initial (experimentally

characterised) clusters. These results are in agreement to those obtained in this work (cf.

previous Chapters 6 and 7).

9.3 Electronic Properties

The electronic properties of the investigated clusters show a strong dependence on satu-

ration. For example those are given by the Mulliken gross populations in Figure 9.2. An

influence of the periodic arrangement on the properties could, however, hardly be observed:

The Mulliken populations, but also the electronic DOS (cf. Figure 9.3) are very similar

for the single clusters and for the periodic structure. However, in detail for the single

non-saturated clusters have no mid- or sub-band-gap states, which vanish when these non-

saturated structures are arranged in periodic superstructures. However, their Fermi level is

not located in the band gap, but at lower energies in the S 3p band. If the surface is com-

pletely saturated the electronic DOS of cluster and superstructure have a band-gap without

defect-states. The Fermi level is in the middle of the gap. Moreover, for all periodic struc-
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Figure 9.3: Electronic DOS of the tetrahedral nanoparticles [Cd17S32 (left column) and

[Cd32S54 (right column). The upper panels show the electronic DOS for the bare clusters.

The lower panels show it for those ones that are surface-saturated (R=H). In each panel

the curve pointing upward refers to the isolated nanoparticles, whereas the curve pointing

downward refers to the periodic super-structures. The dashed line mark the Fermi level.
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tures the corresponding bandstructures have been calculated. These show no dispersion of

the electronic bands and therefore the banstructure is not presented.

Nevertheless, the surfactants itself are stabilised in the cavity, which is due to their dense

packing and covalent linking. Likewise, the organisation of such nanoparticles in Langmuir-

Blodgett films or their embedding in a polymer matrix strongly influences an ordering or

fixation of the ligands. In all cases, the reproducibility of the surface structure of single

nanoparticles is increased. Thus, the surface structure is mainly affecting the electronic and

optical properties of single nanoparticles, rather than those of the superstructure. This is

in agreement to the results of this work (cf. Sections 7 and 8).





10 Summary and Conclusion

In this work, the structural, electronic, and optical properties of CdS nanoparticles with

sizes up to 4 nm have been calculated. In particular the effects of surface saturation have

been studied. To overcome inaccuracies in the description of the unoccupied states by the

applied DFTB method, the new SCF-DFTBmethod has been developed.

In the context of this work the DFTB part of the deMon DFT code has been extended

with the implementation of the routines for the calculation of optical properties in the

γ-approximation and the orbital and atom resolved population analysis (pDOS).

In SCF-DFTB, methodological problems of the charge-transfer description of the stan-

dard DFTB scheme are corrected. For this purpose, two-centre contributions are treated

self-consistently for the specific electronic system. The onsite contributions are described

by free, neutral atoms. Thus, the new SCF-DFTB method represents a systematic im-

provement of DFTB towards SCF-DFT and, therefore, provides further validation of the

DFTB approximations. Hence, it confirms the physical picture, that electronic systems, i. e.,

molecules and bulk, are in the first instance composed of atoms. The description of covalent

binding is already achieved by the two centre interactions, which cover the spatial region

in-between the atoms, that is, where chemical bonds are located. If these interactions are

treated correctly the electronic structure is described to a large extent.

Calculation of the electronic structure of the unoccupied states of CdS demonstrate

the capabilities of the new SCF-DFTB method: As the charge transfer phenomena are

described correctly, the SCF-DFTB band structures are in almost quantitative agreement

with the full potential SCF-DFT level. However, the introduction of a SCF scheme causes an

enormous increase of computing time, which is in the magnitude of SCF-DFT. To improve

the computational efficiency, an approximate SCF-DFTB scheme has been developed and

tested. It provides the same efficiency as the standard DFTB and is absolutely necessary

for studying large semiconductor structures.

A further result of this work was a development of a recipe to generate model structures

of CdS nanoparticles. For this task, a saturation scheme of the nanoparticles surface has

been developed which respects experimental observations. This scheme has been imple-

mented in a computer algorithm. It allows the creation and saturation of semiconductor

nanoparticles structures by cutting out distinct fragments of the corresponding solid struc-

ture. The nanoparticles can be selected by specification of different crystal structures, sizes,

shapes and saturation patterns. This is important as the shape of the particle as well as its

crystal structure influences the optical properties.
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For the correct treatment of properties of CdS nanoparticles it has been shown that

not only a complete saturation of the surface atoms, but also their charge is important for

structural stabilisation, especially for the surface atoms. These results have been validated

by reference calculations on experimentally determined structures.

The calculations of electronic structure and linear-response excitation spectra of these

nanoparticles show that they depend to a large extent on the way their surfaces are saturated.

As the nanoparticles can be modelled now correctly, the theoretical results agree for the

quantum size effect (QSE), in particular for HOMO-LUMO gap energies and the lowest

excitation energies, with experiment and with high-level reference calculations.

The very good agreement between theory and experiment holds also for the impact

of surface saturation and charge q to the electronic states at the Fermi level. For these

states, an angular dependence of the MO wavefunctions have been obtained. HOMO−i with

i = 0, 1, 2 and LUMO are of s character, even for the smallest structures. Higher angular

momenta have been obtained for larger particles. Thus, through this spatial overlap of hole

and electron wavefunction the onset excitation (s-s) and for larger structures the excitations

with the next higher energies (p-p) are excitonic.

The investigations of partial saturation and single dangling bonds have demonstrated

that already one missing surfactant has a strong influence on the electronic structure of the

states closest to the Fermi level. A change of the saturation of the surface is crucial for the

electronic structure and, thus, optical processes. It has been shown that already a single

dangling bond at a Cd atom causes a sub-band gap state which is located at this atom. This

dangling bond not only reduces the oscillator strengths in the complete absorption spectra,

but also introduces additional, low-lying excitations.

Finally, the effects of periodic organisation of tetrahedral clusters to superstructures

are investigated. Despite the different overall structure and the organisation, the effects of

surface saturation, which have been found for the single nanoparticles, are also found for

these systems. However, the periodic arrangement shows no evidence of introducing major

changes in the electronic properties. Nevertheless, organisation prevents structural changes

at the sites of conjunction, although this may be considered as a special type of structural

and electronic saturation. It further shows that surface saturation is very important for

properties of semiconductor nanoparticles. Studying them should be a central subject for

any investigation of large, but finite, systems.

This work establishes the DFTB (SCF-DFTB) method as general tool for the accurate

and efficient investigation of properties of nanoparticles and related systems. Giving an

outlook therefore provides the basis for the investigation of other II–VI semiconductor binary

nanoparticles compounds, e. g., CdSe, CdTe, ZnS, ZnSe and ZnTe, as well as for the III–V

analogues. For material research DFTB is predestined, since it allows the investigation of

highly complex systems, e. g., core/shell structures, nanorods and tetrapods.



Appendix A Series of experimentally characterised

CdS clusters

This Section provides a systematic summary of the structures of CdS clusters. These

structures are assigned to size series, which characterise them by crystal structure and shape

[141]. Most of them exhibit a tetrahedral in some cases even cuboctahedral shape within the

atomic structure being dominated by the bulk CdS modifications zinc blende and wurtzite

or a mixture of them. The existence of both structures not surprising since the energetic

difference between these two structures is small although the basic processes of the structure

formation are not yet known in detail.

A.1 Zinc blende structure and tetrahedral shape

This series of clusters is derived from tetrahedral fragments of the cubic sphalerite lattice

wherein the adamantine (C6H10) framework can be identified as central structural element

[114]. [Cd4(SR)10]
2 – , [S4Cd10(SR)16]

4 – , [S13Cd20(SR)22]
8 – and [S28Cd35(SR)28]

14 – .

The thiolate ligands terminating the edges and vertices of the supertetrahedron, with-

out disruption of the molecular lattice structure or modification of the metal coordination

stereochemistry, and the thiolate ligands do not affect the faces.

Hagen et al. [189] where able to isolate the smallest cluster of this series [Cd4(SR)10]
2 –

with (R−−Ph). The four Cd atoms are located at the vertex of a triangular pyramid.

When placing one more Cd atoms to each of the edge positions the decanuclear

complex [Cd10(SR)16]
4 – was obtained by Lacelle et al. [115]. If thiolate surfactants at

the planes of this cluster are replaced by single S atoms [Cd10(SR)12] is formed. The

[S4Cd10(SCH2CH2OH)16]
4 – have been synthesised by Strickle [113]. This cluster has mer-

captoethanol ligands. It is obtained by adding four −SR ligands that coordinate to

each Cd atom at the four vertexes of the Cd10S16-tetrahedron. The equivalent cluster

[S4Cd10(SCH2CH2OH)16]
4 – with thiophenolate ligands was found by Dance et al. [114].

Larger clusters in this series are [S13Cd20(SR)22]
8 – and [S28Cd35(SR)28]

14 – which are

constructed by adding for or five Cd atoms on each side of the triangular pyramid. The

latter pyramidal cluster seems unstable, because the four Cd atoms at the vertex tend to

leave the cluster through the MO-calculation process with geometry optimisation [149].
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A.2 Wurtzite structure with tetrahedral shape

CdS clusters exhibiting only structural elements of wurtzite have not been observed exper-

imentally, which is explained with a large electric polarisation for the small clusters [24].

The smallest member if such a series may be [S1Cd4(SR)10]
4 – with a barelanoid∗ like cage

structure. The instability of these may from the large electric polarisation in a small clus-

ter. [S1Cd4(SH)10]
4 – is 14.0D, while that of zinc blende type [Cd4(SH)10]

2 – is 1.5D. To form

wurtzite type Cd-thiolate clusters this large dipole moment neutralised.

A.3 Zinc blende/wurtzite mixed structure with tetrahedral shape

A first cluster series is constructed tetra capped tetrahedral-core (wurtzite) topology [117]

, with barelanoid cages at the core/cap interfaces: [SCd8(SR)12]
2+ being the first member,

[S6Cd26(SR)28]
8 – (second) and [S50Cd60(SR)40]

20 – (third). When n is the number of layers

of [CdS4] tetrahedron in the core the total number N of Cd atoms can be derived by

N = (n + l)(n + 2)(5n + 3)/6. In the case of [SCd8(SR)12]
2+ the large dipole moment

mentioned in the previous is compensated by assembling four barelanoid units that have the

central SCd –
4 unit in common.

The second series consists of a adamantine core structure with barelanoid caps at the

tetrahedral pyramid vertices [117]: [S4Cd17(SR)28]
2 – is the third member with a Cd atom in

the centre, [S14Cd32(SR)40]
4 – the fourth member and [S32Cd54(SR)52]

8 – the fifth member.

These clusters with mixed structures are most reported. One reason, mainly discussed

for their appearance is their almost zero dipole moment which stabilise them. From the

first series only the [SCd8(SR)12]
2+ was reported [148], where as the second shows two main

exponents. Dance et al. [117] reported of Cd17S4(SC6H5)28]
2 – in which all Cd atoms are

fourfold coordinated and the surface S atoms are bridging two Cd atoms except the four at

the vertex that are just single bonded. Herron et al. [118] report of [Cd32S14(SPh)36]
4 – and

with similar a build up, but the centre is not located at a Cd atom than in the a adamantine

like unit. Moreover Vossmeyer et al. succeeded in arranging this clusters periodically in a

crystal structure Cd17S4(SCH2CH2OH)26 [119] and Cd32S14(SCH2CH(CH3)OH)36 [120].

A.4 Zinc blende structure with cuboctahedral shape

The series of cuboctahedral shaped zinc blende derived clusters is a successive build-up

of nearest-neighbour bonds shells whereas the centre of the cluster is located at an atom

position [122]. When this is a Cd atom Cd(SR)4 is the smallest representative of the series:

[S4Cd13(SR)24]
6 – and [S28Cd55(SR)64]

10 – correspond to four and six shells, that are added.

∗(The barelanoidal structure corresponds to the 1,4-diazabicyclo[2.2.2]octane (DABCO) framework.
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If a S at the centre, [S1Cd4(SR)12]
6 – is obtained within three shells. [S13Cd28(SR)42]

12 –

and [S55Cd92(SR)92]
18 – have five and seven shells, respectively. Alternatively this cubocta-

hedral shaped particles can be considered as tetrahedron from which the vertices have been

removed.
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Figure B.1: Calculated bandstructures of wurtzite CdS using DFTB (left panels), SCF-

DFTB (right panels) and the results which include the SCC-correction (lower panels). The

reference bandstructure is represented by a SCF-DFT calculation (blue curves). The Further

details of the calculations are given in Section 5.2.
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Figure B.2: Calculated electronic DOS of wurtzite CdS bulk corresponding to the band-

structures in Figure B.1. Additionally the projected DOS (p-DOS) to the atomic functions

of Cd (left column) and S (right column) is depicted. The valence band edge is shifted to

0 eV. Further details of the calculations are given in Section 5.2.
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Figure B.3: Frontier orbitals of [Cd54S32(SR)48]
4 – with saturation defect: The four missing

ligands at the vertices cause dangling bonds which affect the optical properties. These are

discussed in (cf. Section 8.4). More information in the structures are given in Table 8.1 and

the corresponding optical excitation spectrum in Figure 8.2. The SCF-DFTB MO energies

are depicted in Figure 8.1. For better depiction the MO’s (SCF-DFTB) are approximated

by the projected atomic contributions (sulphur yellow; cadmium grey colour) to the orbital

(Mulliken-population analysis) represented as spheres centred at the corresponding atom.
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Figure B.4: Frontier orbitals of [Cd54S32(SR)52]
8 – : The four missing ligands at the vertices

of the structure [Cd54S32(SR)48]
4 – (cf. Figure 8.4) are added. The optical properties are dis-

cussed in Sections 8.2 and 8.4. More information in the structures are given in Table 8.1 and

the corresponding optical excitation spectrum in Figure 8.2. The SCF-DFTB MO energies

are depicted in Figure 8.1. For better depiction the MO’s (SCF-DFTB) are approximated

by the projected atomic contributions (sulphur yellow; cadmium grey colour) to the orbital

(Mulliken-population analysis) represented as spheres centred at the corresponding atom.
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Figure B.5: Frontier orbitals of [Cd17S4(SH28)]
2 – : LUMO (upper structure) and the ener-

getically degenerated LUMO+1, LUMO+2 and LUMO+3 (lower structures).
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[89] Köster, A., Flores-Moreno, R., Geudtner, G., Goursot, A., Heine, T., Reveles, J.,

Vela, A., Patchkovskii, S., and Salahub, D. R., deMon 2004, NRC, Canada, Hompage

http://www.deMon-Software.com, URL http://www.deMon-Software.com. 11

[90] Phillips, J. C. and Kleinman, L., New method for calculating wave functions in crystals

and molecules, Physical Review 116, 287–294 (1959). 12

[91] Wigner, E. and Seitz, F., On the constitution of metallic sodium, Physical Review 43,

804–810 (1933). 13, 21, 23

[92] Wigner, E. and Seitz, F., On the Constitution of Metallic Sodium. II, Physical Review

46, 509–524 (1934). 13, 21, 23

[93] Eschrig, H. and Bergert, I., An optimized LCAO version for band structure calcula-

tions application to copper, physica status solidi (b) 90, 621–628 (1978). 13, 29
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